精英家教网 > 高中数学 > 题目详情
3.设Sn是公差为d的等差数列{an}的前n项和,则数列S6-S3,S9-S6,S12-S9是等差数列,且其公差为9d.通过类比推理,可以得到结论:设Tn是公比为2的等比数列{bn}的前n项积,则数列$\frac{T_6}{T_3}$,$\frac{T_9}{T_6}$,$\frac{{{T_{12}}}}{T_9}$是等比数列,且其公比的值是512.

分析 由等差数列的性质可类比等比数列的性质,因此可根据等比数列的定义求出公比即可.

解答 解:由题意,类比可得数列$\frac{T_6}{T_3}$,$\frac{T_9}{T_6}$,$\frac{{{T_{12}}}}{T_9}$是等比数列,且其公比的值是29=512,
故答案为512.

点评 本题主要考查等比数列的性质、类比推理,属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.命题“?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$<1”的否定是(  )
A.?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$>1B.?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$≥1
C.?x∈R,x2+sinx+ex>1D.?x∈R,x2+sinx+ex≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.
(Ⅰ)求证:AM⊥平面PBC;
(Ⅱ)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知p:x=1,q:x2-3x+2=0,则p是q的充分不必要条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选出适当的一种填空)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设$f(x)=\frac{x}{x+2}(x>0)$,数列{an}满足${a_1}=\frac{a}{a+2}$(a>0),an+1=f(an)(n∈N*
(1)求a2,a3,a4,并猜想数列{an}的通项公式;
(2)用数学归纳法证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3-ax在x=1处取得极小值,其中a是实数.
(1)求实数a的值;
(2)用反证法证明:当x>0时,$-\frac{2f(x)}{x^2}$,$\frac{f'(x)}{x}$中至少有一个不小于$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的奇函数f(x)满足f(x+1)=-f(x),当x∈(0,1)时,f(x)=cos($\frac{π}{2}$x+$\frac{π}{2}$),则函数y=f(x)-log4|x|的零点个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合U={1,2,3,4,5,6},A={1,2,5},B={1,3,4},则(∁UA)∩B的真子集个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.抛物线顶点在原点,焦点在y轴上,又它的准线方程为y=3,则该抛物线的方程为x2=12y.

查看答案和解析>>

同步练习册答案