如图,在长方体中,,,是线段的中点.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
(Ⅰ)详见解析;(Ⅱ)
解析试题分析:1.本题的模型是长方体,因此采用坐标法不失为一个好的选择.2.本题也可以采用几何法的方式进行求解.(Ⅰ)如图,连接,交于,可以证明四边形是平行四边形,从而,进而可以证明平面.(Ⅱ)过作于,因为底面是正方形,可以证明平面,从而即为所求角.接下来解之即可.第(Ⅱ)问也可以用等积的办法来求解.
试题解析:(Ⅰ)证明:在长方体中,
∵,,∴.
建立如图所示的空间直角坐标系,设的中点为,连接,根据题意得,,,,,,线段的中点为,线段的中点为.
∴, .∴.
∵平面,平面,∴.
∴平面.
(Ⅱ)解:,,,
设平面的一个法向量为,根据已知得
取,得
∴是平面的一个法向量.
∴.
∴直线与平面所成角的正弦值等于.
考点:空间线面位置关系、线面平行、线面角的求法.
科目:高中数学 来源: 题型:解答题
在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,重合后的点记为,构成一个三棱锥.
(1)请判断与平面的位置关系,并给出证明;
(2)证明平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PA丄平面ABCD,,,AD=AB=1,AC和BD交于O点.
(I)求证:平面PBD丄平面PAC.
(II)当点A在平面PBD内的射影G恰好是ΔPBD的重心时,求二面角B-PD-A的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com