精英家教网 > 高中数学 > 题目详情
如图所示,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为
A.ACBD
B.AC∥截面PQMN
C.ACBD
D.异面直线PMBD所成的角为45°
C
解:因为截面PQMN是正方形,所以PQ∥MN、QM∥PN,
则PQ∥平面ACD、QM∥平面BDA,
所以PQ∥AC,QM∥BD,
由PQ⊥QM可得AC⊥BD,故A正确;
由PQ∥AC可得AC∥截面PQMN,故B正确;
异面直线PM与BD所成的角等于PM与QM所成的角,故D正确;
综上C是错误的.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,,点E在棱PB上.

(Ⅰ)求证:平面
(Ⅱ)当时,求AE与平面PDB所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥的底面为正方形,侧棱底面,且分别是线段的中点.

(Ⅰ)求证://平面
(Ⅱ)求证:平面
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知平面平面,矩形的边长.

(Ⅰ)证明:直线平面
(Ⅱ)求直线和底面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直, AA1=AB=AC=1,AB⊥AC, M是CC1的中点, N是BC的中点,点P在线段A1B1上,且满足A1P=lA1B1.
(1)证明:PN⊥AM.
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角最大值的正切值.
(3)是否存在点P,使得平面 PMN与平面ABC所成的二面角为45°.若存在求出l的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中错误的是.
A.若,则
B.若,则
C.若,则
D.若=AB,//AB,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱锥ABC,点P,A,B,C都在半径为的求面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a、b是不重合的两个平面,mn是直线,下列命题中不正确的是(  )
A.若mnm^a,则n^aB.若m^a,mÌb,则a^b
C.若m^a,a∥b,则m^bD.若a^b,mÌa,则m^b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

l1,l2是空间中两条不同的直线,a,β是两个不同的平面,则下列命题正确的是
A.B.
C.D.

查看答案和解析>>

同步练习册答案