精英家教网 > 高中数学 > 题目详情
11.直线l1:2x+(m+1)y+4=0和直线l2:mx+3y-2=0平行,则m=(  )
A.-3或2B.2C.-2或3D.3

分析 利用直线l1:2x+(m+1)y+4=0和直线l2:mx+3y-2=0平行,$\frac{2}{m}=\frac{m+1}{3}≠\frac{4}{-2}$,即可求出m的值.

解答 解:∵直线l1:2x+(m+1)y+4=0和直线l2:mx+3y-2=0平行,
∴$\frac{2}{m}=\frac{m+1}{3}≠\frac{4}{-2}$,
解得:m=-3或2.
故选:A.

点评 本题考查直线的一般式方程与直线的平行关系,考查解方程的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.晚会上有5个不同的歌唱节目和3个不同的舞蹈节目,分别按以下要求各可以排出多少种不同的节目单:
(1)3个舞蹈节目排在一起;
(2)3个舞蹈节目彼此分开;
(3)3个舞蹈节目先后顺序一定;
(4)前4个节目中既要有歌唱节目,又要有舞蹈节目.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(加增的顺序为从塔顶到塔底).答案应为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知F1(-2,0),F2(2,0),满足||PF1|-|PF2||=2的动点P的轨迹方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,由直三棱柱ABC-A1B1C1和四棱锥D-BB1C1C构成的几何体中,∠BAC=90°,AB=1,BC=BB1=2,C1D=CD=$\sqrt{5}$,平面CC1D⊥平面ACC1A1
(Ⅰ)求证:AC⊥DC1
(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1
(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为$\frac{π}{3}$?若存在,求$\frac{BP}{BC}$的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<3),左右焦点分别为F1,F2,过F1的直线l交椭圆于A、B两点,若|BF2|+|AF2|的最大值为10,则b的值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知过点P(2,2)的直线l和圆C:(x-1)2+y2=6交于A,B两点.
(Ⅰ)若点P恰好为线段AB的中点,求直线l的方程;
(Ⅱ)若$|{AB}|=2\sqrt{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=log2($\frac{1+mx}{2x-1}$)-x(m为常数)是奇函数.
(1)判断函数f(x)在x∈($\frac{1}{2}$,+∞)上的单调性,并用定义法证明你的结论;
(2)若对于区间[2,5]上的任意x值,使得不等式f(x)≤2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知θ为锐角,且sinθ=$\frac{3}{5}$,则sin(θ+45°)=(  )
A.$\frac{7\sqrt{2}}{10}$B.-$\frac{7\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{10}$D.-$\frac{\sqrt{2}}{10}$

查看答案和解析>>

同步练习册答案