精英家教网 > 高中数学 > 题目详情
已知△ABC的内角A,B,C对边分别为a,b,c,若cosC=
a
b
,且sinC=
3
2
sinB,则△ABC的内角A=
 
考点:正弦定理
专题:解三角形
分析:利用余弦定理表示出cosC,代入已知第一个等式整理得到关系式,第二个关系式利用正弦定理化简,代入上式得出的关系式整理表示出a,再利用余弦定理表示出cosA,把表示出的a与c代入求出cosA的值,即可确定出A的度数.
解答: 解:由已知等式及余弦定理得:cosC=
a2+b2-c2
2ab
=
a
b
,即a2+b2-c2=2a2①,
将sinC=
3
2
sinB,利用正弦定理化简得:c=
3
2
b②,
②代入①得:a2=b2-
3
4
b2=
1
4
b2,即a=
1
2
b,
∴cosA=
b2+c2-a2
2bc
=
b2+
3
4
b2-
1
4
b2
3
b2
=
3
2

则A=
π
6

故答案为:
π
6
点评:此题考查了正弦、余弦定理,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)=f(2-x),当x∈[-1,0]时,f(x)=1-(
1
2
)x
,则f(2014)+f(2015)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos
2x
5
+sin
2x
5
的图象中相邻的两个对称中心之间的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=2an-1+1(n≥2)且a1=1,bn=log2(a2n+1+1),cn=
1
b
2
n
-1
.求证:
(Ⅰ)数列{an+1}为等比数列,并求数列{an}的通项公式;
(Ⅱ)数列{cn}的前n项和Sn
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xm-
1
x
,且f(2)=
15
2

(1)求m的值;
(2)判定f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
2x-2,x≤2
lo
g
x-1
2
,x>2
,则f(f(5))=(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
1-i
1+i
  
(i为虚数单位)的虚部是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若已知集合A={x|-1≤x≤2},B={x|x<1},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:椭圆C1
x2
4
+
y2
1
=1,椭圆C2
y2
8
+
x2
2
=1,则在这两个椭圆的a、b、c、e四个量中,相同的量是
 

查看答案和解析>>

同步练习册答案