精英家教网 > 高中数学 > 题目详情

【题目】如图,在棱长为的正方体中,点是棱的中点, 是底面上(含边界)一动点,满足,则线段长度的取值范围是( )

A. B. C. D.

【答案】D

【解析】因为平面 平面 所以 ,又因为 所以可得平面 当点在线段 上时,总有所以的最大值为 的最小值为 可得线段长度的取值范围是故选D.

【方法点晴】本题主要考查正方体的性质、线面垂直的判定定理的应用,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量m=(cos,sin ),n=(2+sinx,2-cos),函数m·nx∈R.

(1) 求函数的最大值;

(2) 若 =1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.

(1)的方程;

(2)是否存在直线,使得交于两点,与只有一个公共点,且?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的奇函数fx),当x>0时,fx)=ax2+bx+8(0<a<4),点A(2,0)在函数fx)的图象上,且关于x的方程fx)+1=0有两个相等的实根.

(1)求函数fx)解析式;

(2)若x∈[tt+2](t>0)时,函数fx)有最小值1,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱的正(主)视图和侧(左)视图如图所示,设,的中心分别为, ,现将此三棱柱绕直线旋转,射线旋转所成角为弧度(可以取到任意一个实数),对应的俯视图的面积为,则函数的最大值为__________,最小正周期为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若m=0,求函数f(x)的定义域;

(2)若函数f(x)的值域为R,求实数m的取值范围;

(3)若函数f(x)在区间上是增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|﹣|x+2|.
(1)求不等式f(x)>0的解集;
(2)若存在x0∈R,使得f(x0)+2a2<4a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则(

A.3∈A
B.5∈A
C.2 ∈A
D.4 ∈A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半这条直线被后人称之为三角形的欧拉线的顶点,且的欧拉线的方程为,则顶点C的坐标为  

A. B. C. D.

查看答案和解析>>

同步练习册答案