精英家教网 > 高中数学 > 题目详情
已知曲线f(x)=x3-3ax(a∈R),直线y=-x+m,m∈R
(Ⅰ)当a=
4
3
时,且曲线f(x)与直线有三个交点,求m的取值范围
(Ⅱ)若对任意的实数m,直线与曲线都不相切,
(ⅰ)试求a的取值范围;
(ⅱ)当x∈[-1,1]时,曲线f(x)的图象上是否存在一点P,使得点P到x轴的距离不小于
1
4
.试证明你的结论.
分析:(Ⅰ)解:当a=
4
3
时,f(x)=x3-4x,由曲线f(x)与直线有三个交点,可得x3-3x=m有三个不同的根,构造函数
g(x)=x3-3x,先求导可得g'(x)=3x2-3=3(x+1)(x-1),通过研究函数g(x)的单调性求解函数的极值,结合极值可求满足条件的m的范围
(II)(i)首先分析对任意的m直线x+y+m=0都不是曲线y=f(x)的切线的含义,即可求出函数f(x)=x3-3ax(a∈R)的导函数,使直线与其不相交即可.
(ii )(法一):问题等价于当x∈[-1,1]时,|f(x)|max
1
4
,设g(x)=|f(x)|,则由g(x)在x∈[-1,1]上是偶函数,可知只要证明当x∈[0,1]时,|f(x)|max
1
4
,利用导数判断函数的单调性,结合单调性求解相应的最大值即可
(法二)可考虑利用反证法证明假设在x∈[-1,1]上不存在x0,使得|f(x0)|
1
4
成立.下同法一的证明思路
解答:解:(Ⅰ)当a=
4
3
时,f(x)=x3-4x
∵曲线f(x)与直线有三个交点
∴x3-4x=-x+m有三个不同的根
∴x3-3x=m有三个不同的根,
令g(x)=x3-3x,g'(x)=3x2-3=3(x+1)(x-1)
∴g(x)在(-1,1)上递减,(1,+∞),(-∞,-1)上递增g(-1)极大值=2,g(1)极小值=-2
∴当-2<m<2时,曲线f(x)与直线有三个交点
(Ⅱ)(i)f(x)=3x2-3a∈[-3a,+∞],
∵对任意m∈R,直线x+y+m=0都不与y=(x)相切,
∴-1不属于[-3a,+∞],-1<-3a,实数a的取值范围是a<
1
3

(ii)存在,证明方法1:问题等价于当x∈[-1,1]时,|f(x)|max
1
4

设g(x)=|f(x)|,则g(x)在x∈[-1,1]上是偶函数,
故只要证明当x∈[0,1]时,|f(x)|max
1
4

①当a≤0时,f′(x)≥0,f(x)在[0,1]上单调递增,且f(0)=0,g(x)=f(x)
g(x)max=f(1)=1-3a>1>
1
4

②当0<a<
1
3
时f′(x)=3x2-3a=3(x+
a
)(x-
a
),
列表:
x (-∞,-
a
-
a
(-
a
a
a
a
,+∞)
f′(x) + 0 - 0 +
f(x) 极大值2a
a
极小值
-2a
a
f(x)在(0,
a
)上递减,在(
a
,1)上递增,
注意到f(0)=f(
3a
)=0
,且
a
3a
<1,
∴x∈(0,
3a
)时,g(x)=-f(x),x∈(
3a
,1)时,g(x)=f(x),
∴g(x)max=max{f(1),-f(
a
)},
f(1)=1-3a≥
1
4
0<a<
1
3
,解得0<a≤
1
4
,此时-f(
a
)≤f(1)
成立.
g(x)max=f(1)=1-3a≥
1
4

-f(
a
)=2a
a
1
4
0<a<
1
3
,解得
1
4
≤a<
1
3
,此时-f(
a
)≥f(1)
成立.
g(x)max=-f(
a
)=2a
a
1
4

∴在x∈[-1,1]上至少存在一个x0,使得|f(x0)|
1
4
成立.
(II)存在,证明方法2:反证法
假设在x∈[-1,1]上不存在x0,使得使得|f(x0)|
1
4
成立.
,即任意|f(x0)|<
1
4
,x∈[-1,1],设g(x)=|f(x)|
,则g(x)在x∈[-1,1],上是偶函数,
∴x∈[0,1]时,|f(x)|max
1
4

①当a≤0时,f′(x)≥0,f(x)在[0,1]上单调递增,且f(0)=0,g(x)=f(x)
g(x)max=f(1)=1-3a<
1
4
a>
1
4
与a≤0矛盾;
②当0<a<
1
3
f(x)=3x2-3a=3(x+
a
)(x-
a
)
,可知f(x)在(0,
a
)
上递减,在(
a
,1)
上递增,
注意到f(0)=f(
3a
)=0
,且
a
3a
<1

x∈(0,
3a
)
时,g(x)=-f(x),x∈(
3a
,1)
时,g(x)=f(x),
g(x)max=max{f(1),-f(
a
)}

注意到0<a<
1
3
,由:
-f(
a
)≤f(1)=1-3a
f(1)=1-3a<
1
4
0<a≤
1
4
a>
1
4
矛盾;
-f(
a
)≥f(1)=1-3a
-f(
a
)=2a
a
1
4
a≥
1
4
a<
1
4
矛盾;
∴x∈[-1,1],|f(x)0|<
1
4
a<
1
3
矛盾,
∴假设不成立,原命题成立.
点评:本题综合考查了导数的应用:求解函数的单调区间‘函数的极值及方程与函数的相互转换的应用,解题过程要求考生具备较强的逻辑推理能力及分析问题解决问题的能力.还有注意反证法在证明命题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=
x-1
在点A(2,1)处的切线为直线l
(1)求切线l的方程;
(2)求切线l,x轴及曲线所围成的封闭图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+5,若曲线f(x)在点(1,f(1))处的切线斜率为3,且当x=
23
时,y=f(x)有极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=x3+bx2+cx在点A(-1,f(-1)),B(3,f(3))处的切线互相平行,且函数f(x)的一个极值点为x=0.
(Ⅰ)求实数b,c的值;
(Ⅱ)若函数y=f(x),x∈[-
12
,3]
的图象与直线y=m恰有三个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案