精英家教网 > 高中数学 > 题目详情
是椭圆上一点,分别是椭圆的左、右焦点,若,则是的大小为(   )
A.30°B.60°C.120°D.150°
B
根据椭圆的几何性质可得,。而,所以是方程的两根,解得。所以
由余弦定理可得,,则,故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点是(0,2),那么(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分).已知椭圆的中心在原点,焦点在轴上,离心率,一
条准线的方程为(Ⅰ)求椭圆的方程;(Ⅱ)设,直线过椭圆的右焦点为
且与椭圆交于两点,若,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的左、右焦点分别为离心率,点在且椭圆E上,
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点且不与坐标轴垂直的直线交椭圆两点,线段的垂直平分线与轴交于点,求点横坐标的取值范围.
(Ⅲ)试用表示的面积,并求面积的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分) 已知抛物线,顶点为O,动直线与抛物
线交于两点
(I)求证:是一个与无关的常数;
(II)求满足的点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,直线l,椭圆C分别为椭圆C的左、右焦点。
(Ⅰ)当直线l过右焦点时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于AB两点。
(ⅰ)求线段AB长度的最大值;
(ⅱ)的重心分别为GH。若原点O在以线段GH为直径的圆内,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的左、右焦点分别为是椭圆上的一点,,原点到直线的距离为,则椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点F1,F2为椭圆的焦点,P为椭圆上的点,当的面积为1时,的值是(   )
A.0B.1C.3D.6

查看答案和解析>>

同步练习册答案