【题目】学校准备将名同学全部分配到运动会的田径、拔河和球类个不同项目比赛做志愿者,每个项目至少 名,则不同的分配方案有________种(用数字作答).
科目:高中数学 来源: 题型:
【题目】已知椭圆C:l(a>b>0)经过点(,1),且离心率e.
(1)求椭圆C的方程;
(2)若直线l与椭圆C相交于AB两点,且满足∠AOB=90°(O为坐标原点),求|AB|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。
(1)证明:平面;
(2)求平面与平面所成锐二面角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在上的函数满足:对任意的,当时,都有.
(1)若,求实数的取值范围;
(2)若为周期函数,证明:是常值函数;
(3)若
①记,求数列的通项公式;
②求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年9月24日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会指出,1952年~2018年,我国GDP查679.1亿元跃升至90.03万亿元,实际增长174倍;人均GDP从119元提高到6.46万元,实际增长70倍.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社会的跨越式发展.如图是全国2010年至2018年GDP总量(万亿元)的折线图.
注:年份代码1~9分别对应年份2010~2018.
(1)由折线图看出,可用线性回归模型拟合与年份代码的关系,请用相关系数加以说明;
(2)建立关于的回归方程(系数精确到0.01),预测2019年全国GDP的总量.
附注:参考数据:,,,.
参考公式:相关系数;
回归方程中斜率和截距的最小二乘法估计公式分别为,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.
(1)求椭圆C的方程;
(2)如果直线l的斜率等于-1,求出k1k2的值;
(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com