分析 先求出f(x)=x+$\frac{1}{x}$的导数,判断导数的值在两个区间上的符号,若符号为正,此函数在这个区间上是增函数,若导数为负,则这个函数在这个区间上为减函数.
解答 证明:f′(x)=1-$\frac{1}{{x}^{2}}$
当x∈(0,1]时,$\frac{1}{{x}^{2}}$≥1,故1-$\frac{1}{{x}^{2}}$≤0,故函数f(x)=x+$\frac{1}{x}$的(0,1]上是减函数.
当x∈[1,+∞)时,$\frac{1}{{x}^{2}}$≤1,故1-$\frac{1}{{x}^{2}}$≥0,故函数f(x)=x+$\frac{1}{x}$的(0,1]上是增函数.
由上证,f(x)=x+$\frac{1}{x}$的(0,1]上是减函数,在[1,+∞)上是增函数.
点评 本题主要考查函数单调性的判断,一般利用定义法或导数法是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com