精英家教网 > 高中数学 > 题目详情
已知:二次函数f(x)=ax2+bx+c满足:①对于任意实数x,都有f(x)≥x,且当x∈(1,3)时,f(x)≤
18
(x+2)2
恒成立,②f(-2)=0
(1)求证:f(2)=2
(2)求f(x)的解析式.
(3)若g(x)=x+m,对于任意x∈[-2,2],存在x0∈[-2,2],使得f(x)=g(x0)成立,求实数m的取值范围.
分析:(1)对于任意实数x,都有f(x)≥x,且当x∈(1,3)时,f(x)≤
1
8
(x+2)2
恒成立,将x=2代入即可求出f(2)的值即可;
(2)根据f(-2)=0,f(2)=2将b和c用a进行表示,代入解析式根据①可知ax2-
1
2
x+1-4a≥0
对于任意实数x都成立,建立不等关系可求出a、b、c的值;
(3)设函数y=f(x)、y=g(x)在区间[-2,2]上的值域分别为A、B,根据A⊆B建立不等关系,解之即可.
解答:解:(1)由①知道f(2)≥2且f(2)≤
1
8
(2+2)2=2

∴f(2)=2(4分)
(2)∵f(2)=4a+2b+c=2,f(-2)=4a-2b+c=0∴b=
1
2
,c=1-4a(5分)

f(x)=ax2+
1
2
x+1-4a

f(x)≥x等价于ax2-
1
2
x+1-4a≥0

ax2-
1
2
x+1-4a≥0
对于任意实数x都成立
又因为a≠0∴
a>0
△=
1
4
-4a(1-4a)≤0
(7分)
a=
1
8
,c=
1
2
(8分)
此时f(x)=
1
8
x2+
1
2
x+
1
2
=
1
8
(x+2)2,x∈(1,3)时f(x)≤
1
8
(x+2)2成立

f(x)=
1
8
(x+2)2
(10分)
(3)设函数y=f(x)、y=g(x)在区间[-2,2]上的值域分别为A、B
则A=[0,2],B=[m-2,m+2](11分)
由题意得A⊆B(12分)∴
m-2≤0
m+2≥2
(14分)
∴0≤m≤2(16分)
点评:本题主要考查了函数恒成立问题,以及函数解析式的求解及待定系数法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某二次函数f(x)图象过原点,且经过(-1,-5)和(2,4)两点,
(Ⅰ)试求f(x)函数的解析式;
(Ⅱ)判断f(x)在区间[3,7]上的单调性,并用单调函数的定义进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:二次函数f(x)=ax2+bx+1,其中a,b∈R,g(x)=ln(ex),且函数F(x)=f(x)-g(x)在x=1处取得极值.
(I)求a,b所满足的关系;
(II)若直线l:y=kx(k∈R)与函数y=f(x)在x∈[1,2]上的图象恒有公共点,求k的最小值;
(III)试判断是否存在a∈(-2,0)∪(0,2),使得对任意的x∈[1,2],不等式(x+a)F(x)≥0恒成立?如果存在,请求出符合条件的a的所有值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:二次函数f(x)满足f(0)=1和f(x+1)-f(x)=2x.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-ax2+1有一个正的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:二次函数f(x)=ax2+bx+c同时满足条件:①f(3-x)=f(x);②f(1)=0;③对任意实数x,f(x)≥
1
4a
-
1
2
恒成立.
(1)求y=f(x)的表达式;
(2)数列{an},{bn},若对任意n均存在一个函数gn(x),使得对任意的非零实数x都满足gn(x)•f(x)+anx+bn=xn+1,(n∈N*),求:数列{an}与{bn}的通项公式.

查看答案和解析>>

同步练习册答案