精英家教网 > 高中数学 > 题目详情
9.若将函数f(x)=x5表示为:f(x)=a0+a1(1+x)+a2(1+x)2+a3(1+x)3+a4(1+x)4+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则a3=10.

分析 把f(x)=[-1+(1+x)]5 按照二项式定理展开,结合已知f(x)=a0+a1(1+x)+a2(1+x)2+a3(1+x)3+a4(1+x)4+a5(1+x)5,求得a3的值.

解答 解:f(x)=x5=[-1+(1+x)]5=-${C}_{5}^{0}$+${C}_{5}^{1}$•(1+x)-${C}_{5}^{2}$•(1+x)2+${C}_{5}^{3}$•(1+x)3-${C}_{5}^{4}$•(1+x)4+${C}_{5}^{5}$•(1+x)5
再根据f(x)=a0+a1(1+x)+a2(1+x)2+a3(1+x)3+a4(1+x)4+a5(1+x)5
可得a3=${C}_{5}^{3}$=10,
故答案为:10.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.用边长为48cm的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒,求小正方形边长为多少时所做的铁盒容积最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-8lnx,g(x)=-x2+14x
(1)若函数f(x)和函数g(x)在区间(a,a+1)上均为增函数,求实数a的取值范围;
(2)若F(x)=$\frac{1}{4}$[g(x)-f(x)]+m-$\frac{{x}^{2}}{2}$-$\frac{7x}{2}$在[$\frac{1}{e}$,e]上有两个不同的零点,求实数m的取值范围;
(3)试判断方程|-$\frac{1}{8}$f(x)+$\frac{1}{8}$x2-x|=$\frac{lnx}{x}$+$\frac{1}{2}$有无实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=ex-kx在区间(1,+∞)上单调递增,则实数k的取值范围是(-∞,e].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为pa,pb,pc,且相应各边上的高分别为ha,hb,hc,则有$\frac{{p}_{a}}{{h}_{a}}+\frac{{p}_{b}}{{h}_{b}}+\frac{{p}_{c}}{{h}_{c}}$=1.
请你运用类比的方法将此结论推广到四面体中并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的向量,已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+m$\overrightarrow{b}$,$\overrightarrow{CB}$=$\overrightarrow{a}$+3$\overrightarrow{b}$,若A、B、C三点共线,则m的值为:6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若向由f(x)=|x|+2表示的曲线与直线y=3围成的三角形内随机投掷一粒黄豆,求黄豆与点(0,2)的距离小于1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设曲线y=x2+1在点(x,f(x))处的切线的斜率为g(x),则函数y=g(x)cosx的部分图象可以为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案