【题目】在直角坐标系xOy中,曲线C的参数方程为 (α为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ﹣ )=2 (Ⅰ)将直线l化为直角坐标方程;
(Ⅱ)求曲线C上的一点Q 到直线l 的距离的最大值及此时点Q的坐标.
【答案】解:(Ⅰ)∵直线l的极坐标方程为ρcos(θ﹣ )=2 ∴ρ(cos +sin )=2 ,
化简得,ρcosθ+ρsinθ=4,
由x=ρcosθ,y=ρsinθ,
∴直线l的直角坐标方程为x+y=4.
(Ⅱ)由于点Q是曲线C上的点,则可设点Q的坐标为( ),
点Q到直线l的距离为d=
= .
当sin( )=﹣1时,即 ,
dmax= =3 .
此时,cos =﹣ ,sin ,
∴点Q(﹣ ).
【解析】(Ⅰ)直线l的极坐标方程转化为ρcosθ+ρsinθ=4,由x=ρcosθ,y=ρsinθ,能示出直线l的直角坐标方程.(Ⅱ)设点Q的坐标为( ),点Q到直线l的距离为d= ,由此能求出曲线C上的一点Q 到直线l 的距离的最大值及此时点Q的坐标.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x|+|x+1|.
(1)若x∈R,恒有f(x)≥λ成立,求实数λ的取值范围;
(2)若m∈R,使得m2+2m+f(t)=0成立,试求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位.且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=6sinθ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求|PA|+|PB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,PB=PD=2,AC∩BD=O. (Ⅰ)证明:PC⊥BD
(Ⅱ)若E是PA的中点,且△ABC与平面PAC所成的角的正切值为 ,求二面角A﹣EC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,M是边BC的中点,tan∠BAM= ,cos∠AMC=﹣ (Ⅰ)求角B的大小;
(Ⅱ)若角∠BAC= ,BC边上的中线AM的长为 ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,AB=2,cosB= ,点D在线段BC上.
(1)若∠ADC= π,求AD的长;
(2)若BD=2DC,△ABC的面积为 ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在(m,n)上的导函数为g(x),x∈(m,n),g(x)若的导函数小于零恒成立,则称函数f(x)在(m,n)上为“凸函数”.已知当a≤2时, ,在x∈(﹣1,2)上为“凸函数”,则函数f(x)在(﹣1,2)上结论正确的是( )
A.既有极大值,也有极小值
B.有极大值,没有极小值
C.没有极大值,有极小值
D.既无极大值,也没有极小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆E的方程为 +y2=1(a>1),O为坐标原点,直线l与椭圆E交于点A,B,M为线段AB的中点.
(1)若A,B分别为E的左顶点和上顶点,且OM的斜率为﹣ ,求E的标准方程;
(2)若a=2,且|OM|=1,求△AOB面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com