精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系xOy中,已知直线l:ax+y+3=0,点A(0,1),若直线l上存在点M,满足|MA|=2,则实数a的取值范围是a≤-$\sqrt{3}$或a≥$\sqrt{3}$.

分析 求出M的轨迹,转化为直线与圆有交点,利用圆心到直线的距离小于等于半径,建立不等式,即可求出实数a的取值范围.

解答 解:设M(x,y),则
∵点A(0,1),满足|MA|=2,
∴M的轨迹方程为x2+(y-1)2=4,圆心为(0,1),半径为2.
∵直线l:ax+y+3=0,点A(0,1),直线l上存在点M,满足|MA|=2,
∴直线与圆有交点,
∴圆心到直线的距离d=$\frac{4}{\sqrt{{a}^{2}+1}}≤2$,
∴a≤-$\sqrt{3}$或a≥$\sqrt{3}$.
故答案为:a≤-$\sqrt{3}$或a≥$\sqrt{3}$.

点评 本题考查实数的取值范围的求法,考查直线与圆的位置关系.是中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PA⊥ABCD,AB∥CD,AB⊥AD,CD=2AB=PA=AD=2,E,F是CD,PC的中点.
(1)求证:BE∥平面PAD;
(2)求异面直线BE与PD所成的角;
(3)求三棱锥C-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,都有不等式f(x)+xf′(x)>0成立,若a=40.2f(40.2),b=(log43)f(log43),c=(log4$\frac{1}{16}$)f(log4$\frac{1}{16}$),则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b,c为正实数,给出以下结论:
①若a-2b+3c=0,则$\frac{{b}^{2}}{ac}$的最小值是3;
②若a+2b+2ab=8,则a+2b的最小值是4;
③若a(a+b+c)+bc=4,则2a+b+c的最小是2$\sqrt{2}$;
④若a2+b2+c2=4,则$\sqrt{5}$ab+$\sqrt{2}$bc的最大值是2$\sqrt{7}$.
其中正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,${\overrightarrow{AB}^2}-(\overrightarrow{AB}•\overrightarrow{AC}+\overrightarrow{BC}•\overrightarrow{BA})=\overrightarrow{CA}•\overrightarrow{CB}$,边AB,BC的中点分别为D,E.
(1)判断△ABC的形状;
(2)若$\overrightarrow{CD}•\overrightarrow{AE}$=0,求sin2B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={x|x2-x+1≥0},B={x|x2-5x+4≥0},则A∩B=(-∞,1]∪[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin2x-2$\sqrt{3}$sin2x,求f(x)的最小正周期及在区间[0,$\frac{2π}{3}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在约束条件$\left\{{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}}\right.$下,函数z=3x-y的最小值是-9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线y2=4x的焦点到双曲线$\frac{y^2}{3}$-x2=1的渐近线的距离是$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

同步练习册答案