精英家教网 > 高中数学 > 题目详情

【题目】三棱锥的三组相对棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为,其中,则该三棱锥体积的最大值为

A. B. C. D.

【答案】D

【解析】试题分析:三棱锥扩展为长方体,三棱锥的体积转化为长方体的体积与四个三棱锥的体积的差,推出B不正确,则C不正确,通过特殊图形说明D正确

解:如图设长方体的三度为,abc;所以所求三棱锥的体积为:abc-4××abc=abca2+b2=2b2+c2=n2a2+c2=m2,所以2a2+b2+c2=n2+m2+2=8a2+b2+c2=4.因为4≥3

abc≤此时a=b=c,与n2+m2=6a2+b2=2,矛盾,所以选项B不正确;则C不正确;当底面三角形是等腰三角形时,m=n=

不难求出三棱锥体积的最大值为,D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

超市

A

B

C

D

E

F

G

广告费支出

1

2

4

6

11

13

19

销售额

19

32

40

44

52

53

54

1)若用线性回归模型拟合的关系,求关于的线性回归方程;

2)用二次函数回归模型拟合的关系,可得回归方程:

经计算二次函数回归模型和线性回归模型的分别约为,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.

参数数据及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全世界人们越来越关注环境保护问题,某监测站点于2016年8月某日起连续天监测空气质量指数(),数据统计如下:

(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;

(2)由频率分布直方图求该组数据的平均数与中位数;

(3)在空气质量指数分别属于的监测数据中,用分层抽样的方法抽取5天,再从中任意选取2天,求事件 “两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的半径为,圆心在轴正半轴上,直线与圆相切.

1)求圆的方程;

(2)过点的直线与圆交于不同的两点 且为时,求: 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),

(Ⅰ) 试求曲线在点处的切线l与曲线的公共点个数;(Ⅱ) 若函数有两个极值点,求实数a的取值范围.

(附:当x趋近于0时, 趋向于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦×矢+矢2).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与实际面积之间存在误差.现有圆心角为π,弦长等于9米的弧田.按照《九章算术》中弧田面积的经验公式计算所得弧田面积与实际面积的差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照 ,…, 分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)

(Ⅰ)求频率分布直方图中字母的值,并求该组的频率;

(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数的值(保留两位小数);

(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是. 若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对于任意都有f(kx2)+f(2x﹣1)>0成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案