精英家教网 > 高中数学 > 题目详情
精英家教网如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
1
2
AD
,BE
.
1
2
AF
,G,H分别为FA,FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C,D,F,E四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.
分析:解法1:(Ⅰ)直接证明GH
.
BC推出四边形BCHG是平行四边形.
(Ⅱ)C,D,F,E四点共面.推出EF∥CH,就是EC,FH共面.又点D在直线FH上所以C,D,F,E四点共面.
(Ⅲ)连接EC,证明BG⊥EA.BG⊥ED,ED∩EA=E,推出BG⊥平面ADE,然后证明平面ADE⊥平面CDE.
解法2:由平面ABEF⊥平面ABCD,AF⊥AB,得AF⊥平面ABCD,以A为坐标原点,射线AB为x轴正半轴,建立如图所示的直角坐标系A-xyz
(Ⅰ)通过
HG
=
BC
,又点G不在直线BC上,说明四边形BCHG是平行四边形.
(Ⅱ)C,D,F,E四点共面.利用
EF
=(-a,0.c),
CH
=(-a,0.c),
EF
=
CH
,又C∉EF,H∈FD,证明C,D,E,F四点共面.
(Ⅲ)通过
CH
AE
=0,
CH
AD
=0
,即CH⊥AE,CH⊥AD,说明平面ADE⊥平面CDE
解答:精英家教网解法1:(Ⅰ)由题意知,FG=GA,FH=HD
所以GH
.
1
2
AD

又BC
.
1
2
AD
,故GH
.
BC
所以四边形BCHG是平行四边形.

(Ⅱ)C,D,F,E四点共面.理由如下:
由BE
.
1
2
AF
,G是FA的中点知,BE
.
GF,所以EF∥BG
由(Ⅰ)知BG∥CH,所以EF∥CH,故EC,FH共面.又点D在直线FH上
所以C,D,F,E四点共面.
(Ⅲ)连接EG,由AB=BE,BE
.
AG及∠BAG=90°知ABEG是正方形
故BG⊥EA.由题设知FA,AD,AB两两垂直,故AD⊥平面FABE,
因此EA是ED在平面FABE内的射影,根据三垂线定理,BG⊥ED
又ED∩EA=E,所以BG⊥平面ADE
由(Ⅰ)知CH∥BG,所以CH⊥平面ADE.
由(Ⅱ)知F∈平面CDE,故CH?平面CDE,得平面ADE⊥平面CDE

精英家教网解法2:由平面ABEF⊥平面ABCD,AF⊥AB,得AF⊥平面ABCD,
以A为坐标原点,射线AB为x轴正半轴,建立如图所示的直角坐标系A-xyz
(Ⅰ)设AB=a,BC=b,BE=c,则由题设得A(0,0,0),B(a,0,0),C(a,b,0),D(0,2b,0),E(a,0,c),G(0,0,c),H(0,b,c)
所以
HG
=(0,-b,0),
BC
=(0,b,0)

于是
HG
=-
BC

又点G不在直线BC上
所以四边形BCHG是平行四边形.
(Ⅱ)C,D,F,E四点共面.理由如下:
由题设知F(0,0,2c),所以
EF
=(-a,0.c),
CH
=(-a,0.c),
EF
=
CH

又C∉EF,H∈FD,故C,D,E,F四点共面.
(Ⅲ)由AB=BE得,所以
CH
=(-a,0,a),
AE
=(a,0,a)

AD
=(0,2b,0)
,因此
CH
AE
=0,
CH
AD
=0

即CH⊥AE,CH⊥AD
又AD∩AE=A,所以CH⊥平面ADE
故由CH?平面CDFE,得平面ADE⊥平面CDE
点评:此题重点考查立体几何中直线与直线的位置关系,四点共面问题,面面垂直问题,考查了空间想象能力,几何逻辑推理能力,以及计算能力;熟悉几何公理化体系,准确推理,注意逻辑性是顺利进行解法1的关键;在解法2中,准确的建系,确定点坐标,熟悉向量的坐标表示,熟悉空间向量的计算在几何位置的证明,在有关线段,角的计算中的计算方法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
 
=
1
2
AD,BE
.
1
2
AF.
(1)求证:C、D、F、E四点共面;
(2)设AB=BE,求证:平面ADE⊥平面DCE;
(3)设AB=BC=BE,求二面角A-ED-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
1
2
AD
,BE
.
1
2
AF
,G,H分别为FA,FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C,D,F,E四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,

BAD=∠FAB=90°,BCAD,BEAF.

(Ⅰ)证明:CDFE四点共面:

(Ⅱ)设AB=BC=BE,求二面角A-ED-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BCAD,BE∥AF.

(Ⅰ)证明:CDFE四点共面:

(Ⅱ)设AB=BC=BE,求二面角A-ED-B的大小.

查看答案和解析>>

同步练习册答案