精英家教网 > 高中数学 > 题目详情

已知函数.若,求的值;当时,求的单调区间.

 ;
时, 的单调递增区间为,单调递减区间为

解析试题分析:因为, ,
所以,  (1分)
 (2分)
所以有:,解得 (3分)
时,   (5分)
  (7分)
时,,  
时,
时,,  (9分)
所以的单调递增区间为,单调递减区间为。(10分)
考点:多项式恒等,应用导数研究函数的单调性。
点评:中档题,利用导数研究函数的单调性,是导数应用的基本问题,主要依据“在给定区间,导函数值非负,函数为增函数;导函数值非正,函数为减函数”。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数F(x )=x2+aln(x+1)
(I)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;
(II)若函数y=f(x)有两个极值点x1,x2,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, 
(1)求函数的单调区间;
(2)若函数上是减函数,求实数的最小值;
(3)若,使成立,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调区间;
(2)已知对定义域内的任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(I)证明当 
(II)若不等式取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)求在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)若函数的图象在点处的切线的倾斜角为,对于任意的
 ,函数在区间 上总不是单调函数,
求实数的取值范围;
(3)求证 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在点处的切线方程为
(Ⅰ)求函数的解析式;
(Ⅱ)若对于区间上任意两个自变量的值,都有,求实数的最小值;
(Ⅲ)若过点,可作曲线的三条切线,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在x=与x =l时都取得极值
(1)求a、b的值与函数f(x)的单调区间
(2)若对x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范围。

查看答案和解析>>

同步练习册答案