精英家教网 > 高中数学 > 题目详情
已知集合M={x|x2-3x≤10},N={x|a+1≤x≤2a+1}.
(1)若a=2,求M∩(CRN);
(2)若M∪N=M,求实数a的取值范围.
考点:并集及其运算,交、并、补集的混合运算
专题:集合
分析:(Ⅰ)a=2时,M={x|-2≤x≤5},N={3≤x≤5},由此能求出M∩(CRN).
(Ⅱ)由M∪N=M,得N?M,由此能求出实数a的取值范围.
解答: (本小题满分8分)
解:(Ⅰ)a=2时,M={x|-2≤x≤5},N={3≤x≤5},
CRN={x|x<3或x>5},
所以M∩(CRN)={x|-2≤x<3}.
(Ⅱ)∵M∪N=M,∴N?M,
①a+1>2a+1,解得a<0;
a+1≤2a+1
2a+1≤5
a+1≥-2
,解得0≤a≤2.
所以a≤2.
点评:本题考查交集、实集的应用,考查实数的取值范围的求法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数
i
3-i
在复平面上对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

“a>b”是“log2a>log2b”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3x≥27,x∈Z},B={x|(x-m-4)(x-m+1)<0}.
(1)求集合∁NA;
(2)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|x+1>0},N={x|x-2<0},则M∩N=(  )
A、(-1,+∞)
B、[-1,2)
C、(-1,2)
D、[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1,CC1=
2
,E是棱BB1的中点.
(Ⅰ)求证:CE⊥AC1
(Ⅱ)求二面角A-C1E-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示是四棱锥的三视图,则该几何的体积等于(  )
A、16
B、34+6
5
C、6
D、17+6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=ax+b(e=2.71828…是自然对数的底数,a,b∈R).
(1)求函数 y=f(x)+g(x)的单调区间;
(2)当a=-1时,若函数 y=
1
f(x)+g(x)
在(-1,+∞)上有意义,求b的取值范围;
(3)如果0≤a≤
1
2
,b=1,求证:当x≥0时,
1
f(x)
+
x
g(x)
≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q=(  )
A、{3,0}
B、{3,1,0}
C、{3,2,0}
D、{3,2,1,0}

查看答案和解析>>

同步练习册答案