【题目】如图,在四棱锥中,底面为直角梯形, , 和均为等边三角形,且平面平面,点为的中点.
(1)求证: 平面;
(2)求平面与平面所成的锐二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】中国第一高摩天轮“南昌之星摩天轮”高度为,其中心距地面,半径为,若某人从最低点处登上摩天轮,摩天轮匀速旋转,那么此人与地面的距离将随时间变化,后达到最高点,从登上摩天轮时开始计时.
(1)求出人与地面距离与时间的函数解析式;
(2)从登上摩天轮到旋转一周过程中,有多长时间人与地面距离大于.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.
(1)证明:EF∥平面PAB;
(2)若二面角P-AD-B为60°.
①证明:平面PBC⊥平面ABCD;
②求直线EF与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆心在轴上的圆经过两点和,直线的方程为.
(1)求圆的方程;
(2)当时,为直线上的定点,若圆上存在唯一一点满足,求定点的坐标;
(3)设点A,B为圆上任意两个不同的点,若以AB为直径的圆与直线都没有公共点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】知向量,,函数,若的图象上相邻两条对称轴的距离为,且图象过点.
(1)求表达式和的单调增区间;
(2)将函数的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若函数在区间上有且只有一个零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在两种设备上加工,生产一件甲产品需用设备2小时, 设备6小时;生产一件乙产品需用设备3小时, 设备1小时. 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )
A. 320千元 B. 360千元 C. 400千元 D. 440千元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 是等边三角形, 为的中点,四边形为直角梯形, .
(1)求证:平面平面;
(2)求四棱锥的体积;
(3)在棱上是否存在点,使得平面?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com