精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,已知点B在以AC为直径的圆上,SA⊥面ABCAESBEAFSCF.

(I)证明:SCEF
(II)若求三棱锥SAEF的体积.
(1)根据题意,利用线面垂直,然后证明得到 ,利用线面垂直的性质定理得到。
(2)

试题分析:解:(I) 
 
 
(II)中,
 
由(I)知
 
由(I)知
点评:解决该试题的关键是熟练的运用线面垂直的性质定理,来证明线线垂直,同时能利用等体积法来求解棱锥的体积,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面α,和两条不重合的直线m,n,则下列四种说法正确的为(    )
A.若m∥n,nα,则m∥α
B.若m⊥n,m⊥α,则n∥α
C.若mα,n,α∥,则m,n为异面直线
D.若α⊥,m⊥α,n⊥,则m⊥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不重合的平面,给出下列命题:
①若,则           ②若 ;      
③若 ;   ④若;   
其中正确命题的个数为                   (      )                                                  
A.1个    B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分别是棱AB、BC、CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为(  )
A.              B.             C.             D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在四棱锥中,底面是正方形.已知.

(Ⅰ)求证:
(Ⅱ)求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图1,在等腰梯形中,上一点, ,且.将梯形沿折成直二面角,如图2所示.

(Ⅰ)求证:平面平面
(Ⅱ)设点关于点的对称点为,点所在平面内,且直线与平面所成的角为,试求出点到点的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是(      )
A.若mα,nβ,m∥n,则α∥β
B.若n⊥α,n⊥β,m⊥β,则m⊥α
C.若m∥α,n∥β,m⊥n,则α⊥β
D.若α⊥β,n⊥β,m⊥n,则m⊥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。

(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在中,边上的高,,沿翻折,使得,得到几何体

(1)求证:
(2)求与平面所成角的正切值。

查看答案和解析>>

同步练习册答案