精英家教网 > 高中数学 > 题目详情
下列函数中,满足f(xy)=f(x)+f(y)的单调递增函数是(  )
A、f(x)=log2x
B、f(x)=x2
C、f(x)=2x
D、f(x)=log
1
2
x
考点:抽象函数及其应用
专题:函数的性质及应用
分析:根据指数函数对数函数幂函数的图象和性质,判断函数的单调性,再利用对数和指数的运算性质即可得到答案
解答: 解:根据对数函数的图象和性质,可知A为单调递增函数,D为单调递减函数,
根据指数函数的图象和性质,可知C为单调递增函数,
根据幂函数的图象和性质,可知B:f(x)=x2(-∞,0)为单调减函数,在(0,+∞)为单调递减函数,
因为2x+2y≠2xy,故不满足f(xy)=f(x)+f(y),f(x)+f(y)=log2x+log2y=f(x)=log2xy=f(xy),
故选:A
点评:本题考查了指数函数对数函数幂函数的图象和性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={x|log2(x-1)<2},N={x|a<x<6},且M∩N=(2,b),则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=-f(x+
3
2
),且f(-2)=f(-1)=-1,f(0)=2,f(1)+f(2)+…+f(2009)+f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x
-
2
3x
5的展开式中的常数项是
 
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足不等式
y≥1
x+y≥3
x-2y-2≤0
,则ω=
y+1
x+1
的取值范围是(  )
A、[-1,
2
5
]
B、[-1,
2
3
]
C、(-∞,-1]∪[
2
5
,+∞)
D、(-∞,-1)∪(
2
5
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在区间[1,+∞)上的函数f(x)满足:①f(2x)=2f(x);②当2≤x≤4时,f(x)=1-|x-3|,则集合S={x|f(x)=f(34)}中的最小元素是(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
1+4
1
2
-x

(1)求f(x)+f(1-x)的值;
(2)求f(
1
1001
)+f(
2
1001
)+f(
3
1001
)+…+f(
1000
1001
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x+3)+6(a>0,a≠1)的图象恒过定点M,椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦点分别为F1,F2,直线l经过点M且与⊙C:x2+y2+2x-6y+9=0相切.
(1)求直线l的方程;
(2)若直线l经过点F2并与椭圆G在x轴上方的交点为P,且cos∠F1PF2=
7
25
,求△PF1F2内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n∈N*,数列{an}的首项a1=1,函数f(x)=
1
3
x3-(an+n+3)x2+2(2n+6)an
x,若x=an+1是f(x)的极小值点,则数列{an}的通项公式为(  )
A、an=
1,n=1
2n+4,n≥2
B、an=2n-1
C、an=
1    n=1
2n   n≥2
D、an=
1    n=1
2n+1  n≥2

查看答案和解析>>

同步练习册答案