精英家教网 > 高中数学 > 题目详情
12.在平面直角坐标系中,已知角α的终边经过点P(-3,4)
(1)求sinα和cosα的值;
(2)化简并求值:$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$.

分析 (1)利用任意角的三角函数的定义,求得sinα和cosα的值.
(2)由条件利用诱导公式进行化简所给的式子,可得结果.

解答 解:(1)∵角α的终边经过点P(-3,4),∴x=-3,y=4,r=5,
∴$sinα=\frac{y}{r}=\frac{4}{5},cosα=\frac{x}{r}=-\frac{3}{5}$.
(2)$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$=$\frac{(-sinα)(-cosα)(-sinα)(-sinα)}{(-cosα)sinαsinαcosα}$=$-tanα=\frac{-sinα}{cosα}=-\frac{4}{3}$.

点评 本题主要考查任意角的三角函数的定义,利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.不等式(x2-2x-3)(x-2)<0的解集为(-∞,-1)∪(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow{a}$=(cosα,1,sinα),$\overrightarrow{b}$=(sinα,1,cosα),则向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角是(  )
A.90°B.60°C.30°D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={y|y=2x},B={x|x2-2x-3>0,x∈R},那么A∩B=(  )
A.(0,3]B.[-1,3]C.(3,+∞)D.(-1,0)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf'(x)+f(x)≤0,对任意的0<a<b,则必有(  )
A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b)D.bf(b)≤f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在梯形ABCD中AB∥CD,AD=CD=CB=2,∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=2.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t为参数)与曲线C:y2-x2=1交于A,B两点.
(1)求|AB|的长;
(2)求AB中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设p:函数$f(x)=\frac{1}{3}{x^3}-a{x^2}+2x+1$ 在区间[1,2]上是单调增函数,设q:方程(2a2-3a-2)x2+y2=1表示双曲线,“p 且q”为真命题,则实数a 的取值范围为$({-\frac{1}{2},\sqrt{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点为F1,F2,A,B分别是椭圆的左顶点和上顶点,若线段AB上存在点P,使PF1⊥PF2,则椭圆的离心率的取值范围为$[\frac{\sqrt{5}-1}{2},\frac{\sqrt{2}}{2}]$.

查看答案和解析>>

同步练习册答案