【题目】如图,在三棱柱中,平面,为的中点,,,,.
(Ⅰ)证明:平面;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(Ⅰ)详见解析;(Ⅱ).
【解析】
(1)连接BC1交B1C于点E,连接DE,证明DE∥,即可证明∥平面.(2)以CA,CB,CC1为x轴、y轴、z轴建立如图所示的空间直角坐标系C﹣xyz,直线DC1与平面B1CD所成角为θ,求出平面B1CD的法向量,然后利用空间向量的数量积求解即可.
(Ⅰ)连接交于点,连接,
∵四边形是平行四边形,
∴点是的中点,
又点为的中点,
∴是的中位线,∴.
又DE平面B1CD,AC1平面B1CD,
∴平面.
(Ⅱ)由,,,由余弦定理得可得,
以点为坐标原点,,,为轴、轴、轴建立如图所示的空间直角坐标系.
则,,,,
∴,,,
设平面的法向量为,则,,
即,令,得,
∴,
∴直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】抛物线的焦点为F,圆,点为抛物线上一动点.已知当的面积为.
(I)求抛物线方程;
(II)若,过P做圆C的两条切线分别交y轴于M,N两点,求面积的最小值,并求出此时P点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;
(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495,510]的产品为合格品,否则为不合格品.表是甲流水线样本频数分布表,图是乙流水线样本频率分布直方图.
表甲流水线样本频数分布表
产品质量/克 | 频数 |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
(1)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;
(2)由以上统计数据作出2×2列联表,并回答能否有95%的把握认为“产品的包装质量与两条自动包装流水线的选择有关”
χ2
甲流水线 | 乙流水线 | 总计 | |
合格品 | |||
不合格品 | |||
总计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面给出四种说法:
①设、、分别表示数据15、17、14、10、15、17、17、16、14、12的平均数、中位数、众数,则;
②在线性回归模型中,相关系数的绝对值越接近于1,表示两个变量的相关性越强;
③绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
④线性回归直线不一定过样本中心点.
其中正确说法的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别为的三内角A,B,C的对边,其面积,在等差数列中,,公差.数列的前n项和为,且.
(1)求数列的通项公式;
(2)若,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列条件的椭圆或双曲线的标准方程:
(1)椭圆的焦点在轴上,焦距为4,且经过点;
(2)双曲线的焦点在轴上,右焦点为,过作重直于轴的直线交双曲线于,两点,且,离心率为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a(x2﹣1)﹣lnx.
(1)若y=f(x)在x=2处的切线与y垂直,求a的值;
(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com