精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,平面的中点,.

(Ⅰ)证明:平面

(Ⅱ)求直线与平面所成角的正弦值.

【答案】(Ⅰ)详见解析;(Ⅱ).

【解析】

1)连接BC1B1C于点E,连接DE,证明DE,即可证明∥平面.(2)以CACBCC1x轴、y轴、z轴建立如图所示的空间直角坐标系Cxyz,直线DC1与平面B1CD所成角为θ,求出平面B1CD的法向量,然后利用空间向量的数量积求解即可.

(Ⅰ)连接于点,连接

∵四边形是平行四边形,

∴点的中点,

又点的中点,

的中位线,∴.

DE平面B1CDAC1平面B1CD

平面.

(Ⅱ)由,由余弦定理得可得

以点为坐标原点,轴、轴、轴建立如图所示的空间直角坐标系.

设平面的法向量为,则

,令,得

∴直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为F,圆,点为抛物线上一动点.已知当的面积为.

(I)求抛物线方程;

(II)若,过P做圆C的两条切线分别交y轴于M,N两点,求面积的最小值,并求出此时P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱柱的底面ABCD为矩形,AB=1,AD=2,,则的长为( )

A. B.  C.    D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;

2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495510]的产品为合格品,否则为不合格品.表是甲流水线样本频数分布表,图是乙流水线样本频率分布直方图.

表甲流水线样本频数分布表

产品质量/

频数

490495]

6

495500]

8

500505]

14

505510]

8

510515]

4

1)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;

2)由以上统计数据作出2×2列联表,并回答能否有95%的把握认为产品的包装质量与两条自动包装流水线的选择有关

χ2

甲流水线

乙流水线

总计

合格品

不合格品

总计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出四种说法:

①设分别表示数据15171410151717161412的平均数、中位数、众数,则

②在线性回归模型中,相关系数的绝对值越接近于1,表示两个变量的相关性越强;

③绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;

④线性回归直线不一定过样本中心点.

其中正确说法的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为的三内角A,B,C的对边,其面积,在等差数列中,,公差.数列的前n项和为,且

(1)求数列的通项公式;

(2)若,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的椭圆或双曲线的标准方程:

(1)椭圆的焦点在轴上,焦距为4,且经过点

(2)双曲线的焦点在轴上,右焦点为,过作重直于轴的直线交双曲线于两点,且,离心率为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax21)﹣lnx

1)若yfx)在x2处的切线与y垂直,求a的值;

2)若fx≥0[1+∞)上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案