分析 (1)平面PAD⊥底面ABCD,由此能证明PA⊥底面ABCD.
(2)由已知得ABCD是平行四边形,从而AD∥BE,由三角形中位线定理得EF∥PD,由此能证明平面BEF∥平面PAD.
(3)由BE⊥CD,AD⊥CD,得PA⊥CD,从而CD⊥PD,再推导出PD∥EF,由此能证明平面BEF⊥平面PCD.
解答 证明:(1)∵平面PAD⊥底面ABCD,
且PA垂直于这两个平面的交线AD,
∴PA⊥底面ABCD.
(2)∵AB∥CD,CD=2AB,E是CD的中点,
∴AB∥DE,且AB=DE,
∴ABCD是平行四边形,∴AD∥BE,
∵BE?平面PAD,AD?平面PAD,∴BE∥平面PAD,
∵E和F分别是CD和PC的中点,∴EF∥PD,
∵EF?平面PAD,PD?平面PAD,∴EF∥平面PAD,
∵BF∩BE=B,AD∩PD=D,
∴平面BEF∥平面PAD.
(3)∵AB⊥AD,ABED是平行四边形,∴BE⊥CD,AD⊥CD,
由(1)知PA⊥底面ABCD,∴PA⊥CD,
∴CD⊥平面PAD,∴CD⊥PD,
∵E和F分别是CD和PC的中点,∴PD∥EF,
∴CD⊥EF,∴CD⊥平面BEF,
∵CD?平面PCD,∴平面BEF⊥平面PCD.
点评 本题考查线面垂直、面面平行、面面垂直的证明,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.
科目:高中数学 来源: 题型:选择题
A. | 2015+$\frac{\sqrt{2015}}{2015}$ | B. | 2015-$\frac{\sqrt{2015}}{2015}$ | C. | 2015 | D. | $\sqrt{2015}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com