精英家教网 > 高中数学 > 题目详情

【题目】已知是函数的一个极值点.

(1)求

(2)求函数的单调区间;

(3)若直线与函数的图象有3个交点,求的取值范围.

【答案】(1);(2)单调增区间是,单调减区间是;(3).

【解析】

试题分析:(1)先求导,再由是函数的一个极值点即求解(2)由(2)确定再由求得单调区间(3)由(2)知,内单调增加,在内单调减少,在上单调增加,且当时,,可得的极大值为,极小值为,再由直线与函数的图象有个交点则须有求解.

试题解析:(1)因为

所以,因此

(2)由(1)知,

时,

时,

所以的单调增区间是

的单调减区间是

(3)由(2)知,内单调增加,在内单调减少,在上单调增加,且当时,

所以的极大值为,极小值为

因此

所以在在三个单调区间直线的图象各有一个交点,当且仅当

因此,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(1)求数列的通项公式,并写出推理过程;

(2)令,试比较的大小,并给出你的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车厂生产三类轿车,每类轿车均有舒适型和标准型两类型号,某月的产量如下表:(单位:辆). 按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.

(1)求的值;

(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本,从中任取2辆,求至少有1辆舒适型轿车的概率;

(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的三棱锥中,底面分别是的中点.

1求证:平面

2,求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.

(Ⅰ)设函数,试求的伴随向量

(Ⅱ)记向量的伴随函数为,求当的值;

由(Ⅰ)中函数的图像纵坐标不变横坐标伸长为原来的倍,再把整个图像向右平移个单位长度得到的图像已知 问在的图像上是否存在一点,使得.若存在,求出点坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-2(a+1)x+2alnx

(1)若a=2. 求f(x)的极值. (2)若a>0. 求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且直线是函数的一条切线.

(1)求的值;

(2)对任意的,都存在,使得,求的取值范围;

(3)已知方程有两个根,若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的极小值;

(Ⅱ)当时,过坐标原点作曲线的切线,设切点为,求实数的值;

(Ⅲ)设定义在上的函数在点处的切线方程为 ,当时,若内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.

(1)若以A表示和为6的事件,求P(A).

(2)这种游戏规则公平吗?说明理由.

查看答案和解析>>

同步练习册答案