【题目】已知是函数的一个极值点.
(1)求;
(2)求函数的单调区间;
(3)若直线与函数的图象有3个交点,求的取值范围.
科目:高中数学 来源: 题型:
【题目】汽车厂生产三类轿车,每类轿车均有舒适型和标准型两类型号,某月的产量如下表:(单位:辆). 按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.
(1)求的值;
(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.
(Ⅰ)设函数,试求的伴随向量;
(Ⅱ)记向量的伴随函数为,求当且时的值;
(Ⅲ)由(Ⅰ)中函数的图像(纵坐标不变)横坐标伸长为原来的倍,再把整个图像向右平移个单位长度得到的图像。已知 ,问在的图像上是否存在一点,使得.若存在,求出点坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)当时,求函数的极小值;
(Ⅱ)当时,过坐标原点作曲线的切线,设切点为,求实数的值;
(Ⅲ)设定义在上的函数在点处的切线方程为: ,当时,若在内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.
(1)若以A表示和为6的事件,求P(A).
(2)这种游戏规则公平吗?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com