精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>b>0)的右焦点与抛物线y2=4x的焦点F重合,点A是两曲线的一个交点,且AF⊥x轴,则该双曲线的离心率为
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据抛物线和双曲线有相同的焦点求得c,根据AF⊥x轴,可判断出|AF|的值和A的坐标,代入双曲线方程,求得离心率e.
解答: 解:∵抛物线y2=4x的焦点(1,0)和双曲线的焦点相同,
∴c=1
∵A是它们的一个公共点,且AF垂直于x轴,
设A点的纵坐标大于0,
∴|AF|=2,
∴A(1,2),
∵点A在双曲线上,
1
a2
-
4
b2
=1,
∵c=1,b2=c2-a2
∴a=
2
-1
∴e=
c
a
=1+
2

故答案为:1+
2
点评:本题考查抛物线和双曲线的方程和性质,主要考查双曲线的离心率的问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若sin(
π
6
)=
3
5
,则cos(
π
3
-α)=(  )
A、-
3
5
B、
3
5
C、
4
5
D、-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

把正整数排列成如图(1)三角形数阵,檫去偶数行中的所有奇数及奇数行中的所有偶数,得到如图(2)的三角形数阵.设图(2)中的正整数按从小到大的顺序构成一个数列{an},若ak=431,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
b2
=1(b>0)的离心率
10
,则b等于(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log5x+x-3,在下列区间中,包含f(x)零点的区间是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
xi(月)12345
yi(千克)0.50.91.72.12.8
(1)在给出的坐标系中,画出关于x,y两个相关变量的散点图.
(2)请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归直线方程
?
y
=
b
x+
?
a

(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克)
(参考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n(
.
x
)
2
?
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

在9和243之间插入2个数,使它们成等比数列,求这两个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(1,2),
b
=(-2,1),则下列结论中不正确的是(  )
A、|
a
-
b
|=|
a
+
b
|
B、(
a
-
b
)⊥(
a
+
b
C、|
a
|=|
b
|
D、
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

由直线2x+y-4=0上任意一点向圆(x+1)2+(y-1)2=1引切线,则切线长的最小值为
 

查看答案和解析>>

同步练习册答案