精英家教网 > 高中数学 > 题目详情

【题目】珠海市某学校的研究性学习小组,对昼夜温差(最高温度与最低温度的差)大小与绿豆种子一天内出芽数之间的关系进行了研究,该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的颗绿豆种子当天内的出芽数(如图2)

已知绿豆种子出芽数(颗) 和温差具有线性相关关系.

(1)求绿豆种子出芽数 (颗)关于温差的回归方程;

(2)假如4月1日至7日的日温差的平均值为,估计4月7日浸泡的颗绿豆种子一天内的出芽数.

附:.

【答案】(1)

(2)640.

【解析】

(1)利用公式可求线性回归方程.

(2)利用(1)的公式可估计4月7日浸泡的颗绿豆种子一天内的出芽数.

(1)依照最高(低)温度折线图和出芽数条形图可得如下数据:

,

,

所以

所以绿豆种子出芽数(颗)关于温差的回归方程为:

(2)因为4月1日至7日温差的平均值为,

所以4月7日的温差,

所以

(颗),

所以4月7日浸泡的颗绿豆种子一天内的出芽数约为颗.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,己知圆,且圆被直线截得的弦长为2.

(1)求圆的标准方程;

(2)若圆的切线轴和轴上的截距相等,求切线的方程;

(3)若圆上存在点,由点向圆引一条切线,切点为,且满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于MN两点。

(1)写出直线l的普通方程和曲线C的直角坐标方程:

(2)若成等比数列,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,椭圆的右焦点,直线过椭圆的右顶点,与椭圆交于另一点,与轴交于点.

1)求椭圆的方程;

2)若为弦的中点,是否存在定点,使得恒成立?若存在,求出点的坐标,若不存在,请说明理由;

3)若,交椭圆于点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲船在岛A的正南B处,以的速度向正北航行,,同时乙船自岛A出发以的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)a1时,求不等式f(x)2的解集;

(2)若对任意xR,不等式f(x)≥a23a3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是平行四边形,∠ADC60°ADAC2OAC的中点,PO⊥平面ABCDPO4MPD的中点.

1)证明:MO∥平面PAB

2)求直线AM与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有编号为10个零件,测量其直径(单位:cm),得到下面数据:

编号

直径

1.51

1.49

1.49

1.51

1.49

1.51

1.47

1.46

1.53

1.47

其中直径在区间内的零件为一等品.

1)上述10个零件中,随机抽取1个,求这个零件为一等品的概率.

2)从一等品零件中,随机抽取2个;

①用零件的编号列出所有可能的抽取结果;

②求这2个零件直径相等的概率.

查看答案和解析>>

同步练习册答案