精英家教网 > 高中数学 > 题目详情
如图,M是平行四边形ABCD的边AB的中点,直线l过点M分别交AD,AC于点E,F,交CB的延长线于点N.若AE=2,AD=6,则=________.
∵AD∥BC,∴△AEF∽△CNF,∴

∵M为AB的中点,∴=1,
∴AE=BN,∴
∵AE=2,BC=AD=6,∴
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E。

证明:(1)BE=EC;
(2)ADDE=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)问是否存在满足以下两个条件的直线l:①斜率为1;②直线被圆C截得的弦为AB,以AB为直径的圆C1过原点.若存在这样的直线,请求出其方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设点F1(-c,0)、F2(c,0)分别是椭圆C:
x2
a2
+y2=1(a>1)
的左、右焦点,P为椭圆C上任意一点,且
PF1
PF2
最小值为0.
(1)求椭圆C的方程;
(2)设直线l1:y=kx+m,l2:y=kx+n,若l1、l2均与椭圆C相切,证明:m+n=0;
(3)在(2)的条件下,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出点B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线AB、CD相交于O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理根据是(  )

A.同角的补角相等
B.等角的余角相等
C.同角的余角相等
D.等角的补角相等

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,则BD的长为________,AB的长为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角形个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,△ABC内接于O,过BC中点D作平行于AC的直线l,l交AB于E,交O于G、F,交O在A点的切线于P,若PE=3,ED=2,EF=3,则PA的长为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面α∥平面β,P是α、β外一点,过点P的直线m分别与α、β交于A、C,过点P的直线n分别与α、β交于B、D,且PA=6,AC=9,PD=8.则BD的长为(  )
A.                B.                C.             D.

查看答案和解析>>

同步练习册答案