精英家教网 > 高中数学 > 题目详情
已知等腰直角三角形ABC的斜边为AB,以点A为中心、点B为焦点作椭圆,若直角顶点C在该椭圆上,椭圆的离心率为e,则e2等于(  )
分析:由题意可得C(
c
2
c
2
)
,代入椭圆方程化简,再利用离心率计算公式即可得出.
解答:解:设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),
由题意可得C(
c
2
c
2
)
,代入椭圆方程得
c2
4a2
+
c2
4b2
=1
,化为c4-6a2c2+4a4=0,
即e4-6e2+4=0,解得e2=3-
5

故选C.
点评:熟练掌握椭圆的标准方程及其性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.点A、D分别是RB、RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连接PB、PC.
(1)求证:BC⊥PB;
(2)求二面角A-CD-P的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.点A、D分别是RB、RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连接PB、PC.
(1)求证:PB⊥BC;
(2)在线段PB上找一点E,使AE∥平面PCD;
(3)求二面角A-CD-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等腰直角三角形ABC中,∠B=90°,AC,BC的中点分别是D,E,将△CDE沿DE折起,使得C-DE-A为直二面角,此时斜边AC被折成折线ADC,则∠ADC等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等腰直角三角形ABC的斜边所在的直线是3x-y+2=0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是(  )

查看答案和解析>>

同步练习册答案