精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知直线经过点,倾斜角,在极坐标系(与直角坐标系取相同的长度单位,以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为.

1)写出直线的参数方程,并把圆的极坐标方程化为直角坐标方程;

2)设与圆相交于两点,求的值.

【答案】1为参数),C;(2

【解析】

1)根据直线经过的点及直线的倾斜角,求出直线的参数方程,利用极坐标与直角坐标的互化方法,求出圆的直角坐标方程;

2)设两点对应的参数为,以直线的参数方程代入圆的方程,整理可得,由根与系数的关系可得,根据直线的参数方程中参数的几何意义,计算即可.

解:(1)直线的参数方程为为参数),

为参数),

,得

C的直角坐标方程为

2)设两点对应的参数为

为参数),代入

化简整理得,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的右顶点与抛物线)的焦点重合.的离心率为,过的右焦点F且垂直于x轴的直线截所得的弦长为.

1)求椭圆和抛物线的方程;

2)过点的直线l与椭圆交于AB两点,点B关于x轴的对称点为点E,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】惠州市某商店销售某海鲜,经理统计了春节前后50天该海鲜的日需求量,单位:公斤),其频率分布直方图如下图所示.该海鲜每天进货1次,每销售1公斤可获利40元;若供大于求,剩余的海鲜削价处理,削价处理的海鲜每公斤亏损10元;若供不应求,可从其它商店调拨,调拨的海鲜销售1公斤可获利30.假设商店该海鲜每天的进货量为14公斤,商店销售该海鲜的日利润为.

1)求商店日利润关于日需求量的函数表达式.

2)根据频率分布直方图,

①估计这50天此商店该海鲜日需求量的平均数.

②假设用事件发生的频率估计概率,请估计日利润不少于620元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线的切线方程为,求实数的值;

2)若函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国正逐渐进入老龄化社会,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如下图表:

据统计,该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:

80岁及以上长者每人每月发放生活补贴300元;

80岁以下老人每人每月发放生活补贴200元;

③不能自理的老人每人每月额外发放生活补贴100.

则政府执行此计划的年度预算为 ___________万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,下列给出四个结论:

的最大值为2

在区间上的单调增区间是

③在中,若,则

④将曲线向左平移个单位,得到函数的图象,再将曲线

所有点的纵坐标变为原来的2倍(横坐标不变),得到函数的导数的图象.其中正确的是_______________(填写所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点(为自然对数的底数).

(Ⅰ)求实数的取值范围;

(Ⅱ)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,的参数方程为t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.

1)求的普通方程和曲线C的直角坐标方程;

2)求曲线C上的点到距离的最大值及该点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,记数列的前项和为,则对任意,则①数列单调递增;②;③;④.上述四个结论中正确的是______.(填写相应的序号)

查看答案和解析>>

同步练习册答案