精英家教网 > 高中数学 > 题目详情

已知命题p:方程x2+mx+1=0有两个不相等的实根;q:不等式4x2+4(m–2)x+1>0的解集为R;若p或q为真,p且q为假,求实数m的取值范围。

解析试题分析:研究四种命题关系,首先研究各命题为真时的充要条件,因为方程x2+mx+1=0有两个不相等的实根,,所以Δ1=m2–4>0,m>2或m<–2;又因为不等式4x2+4(m–2)x+1>0的解集为R,所以Δ2=16(m–2)2–16<0, ∴1<m<3,其次研究复合命题真假性,确定简单命题真假性,因为p或q为真,p且q为假,所以p与q为一真一假,对于命题为假的情形,取命题为真时范围的补集,本题分两组求解,取其并集.
试题解析:解:因为方程x2+mx+1=0有两个不相等的实根,
所以Δ1=m2–4>0,∴m>2或m<–2
又因为不等式4x2+4(m–2)x+1>0的解集为R,
所以Δ2=16(m–2)2–16<0,∴1<m<3          .5分
因为p或q为真,p且q为假,所以p与q为一真一假,
(1)当p为真q为假时,
(2)当p为假q为真时, 
综上所述得:m的取值范围是         .10分
考点:四种命题关系,二次函数、二次方程、二次不等式之间关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,设p:函数在(0,+∞)上单调递减,
q:曲线y=x2+(2a 3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:“不等式对任意恒成立”,命题:“方程表示焦点在x轴上的椭圆”,若为真命题,为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下列说法:(1)命题“”的否定是“”;
(2)关于的不等式恒成立,则的取值范围是
(3)对于函数,则有当时,,使得函数 上有三个零点;
(4)
(5)已知,且是常数,又的最小值是,则7.其中正确的个数是           .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题:方程无实根,命题:方程是焦点在轴上的椭圆.若同时为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题:实数满足,其中;命题:实数满足的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知p:|1-2x|≤5,qx2-4x+4-9m2≤0(m>0).若pq的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案