精英家教网 > 高中数学 > 题目详情

【题目】n为正整数,集合A=.对于集合A中的任意元素,记

(Ⅰ)当n=3时,若,求的值;

(Ⅱ)当时,对于中的任意两个不同的元素,证明:

(Ⅲ)给定不小于2的正整数n,设BA的子集,且满足:对于B中的任意两个不同元素.写出一个集合B,使其元素个数最多,并说明由.

【答案】(Ⅰ)22;(Ⅱ)证明见解析;(Ⅲ)见解析.

【解析】

(Ⅰ)根据定义直接计算即可;

(Ⅱ)设,有,可得

所以,易得

,即可证明结论.

(Ⅲ)根据抽屉原理即可得证.

(Ⅰ)因为

所以

(Ⅱ)当时,对于中的任意两个不同的元素

,有

对于任意的

时,有

时,有

所以,有

又因为

所以,当且仅当时等号成立,

所以,

,当且仅当)时等号成立;

(Ⅲ)由(Ⅱ)可证,对于任意的

,则成立.

所以,考虑设

对于任意的

所以

假设满足条件的集合B中元素个数不少于

则至少存在两个元素在某个集合)中,

不妨设为,则

与假设矛盾,所以满足条件的集合B中元素个数不多于

对于,取,且

则集合满足条件,且元素个数为,

是一个满足条件且元素个数最多的集合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆.E为椭圆在第一象限内一点,点F在椭圆上且与点E关于原点对称,直线与椭圆交于AB两点,则点EF到直线x+y-1=0的距离之和的最大值是________;此时四边形AEBF的面积是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆分别是其左、右焦点,过的直线与椭圆交于两点,且椭圆的离心率为的周长等于.

1)求椭圆的方程;

2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网上购物的普及,传统的实体店遭受到了强烈的冲击,某商场实体店近九年来的纯利润如下表所示:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

时间代号

1

2

3

4

5

6

7

8

9

实体店纯利润(千万)

2

2.3

2.5

2.9

3

2.5

2.1

1.7

1.2

根据这9年的数据,对作线性相关性检验,求得样本相关系数的绝对值为0.254;根据后5年的数据,对作线性相关性检验,求得样本相关系数的绝对值为0.985;

(1)如果要用线性回归方程预测该商场2019年实体店纯利润,现有两个方案:

方案一:选取这9年的数据,进行预测;

方案二:选取后5年的数据进行预测.

从生活实际背景以及相关性检验的角度分析,你觉得哪个方案更合适.

附:相关性检验的临界值表:

小概率

0.05

0.01

3

0.878

0.959

7

0.666

0.798

(2)某机构调研了大量已经开店的店主,据统计,只开网店的占调查总人数的,既开网店又开实体店的占调查总人数的,现以此调查统计结果作为概率,若从上述统计的店主中随机抽查了5位,求只开实体店的人数的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若上恒成立,求实数的取值范围;

3)在(2)的条件下(提示:可以用第(2)问的结论),对任意的,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在从100到999的所有三位数中,百位、十位、个位数字依次构成等差数列的有__________个;构成等比数列的有__________个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为正三角形,为棱的中点,,平面平面

1)求证:平面平面

2)若是棱上一点,与平面所成角的正弦值为,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家正积极推行垃圾分类工作,教育部办公厅等六部门也发布了《关于在学校推进生活垃圾分类管理工作的通知》.《通知》指出,到2020年底,各学校生活垃圾分类知识普及率要达到100%某市教育主管部门据此做了哪些活动最能促进学生进行垃圾分类的问卷调查(每个受访者只能在问卷的4个活动中选择一个)如图是调查结果的统计图,以下结论正确的是(   )

A.回答该问卷的受访者中,选择的(2)和(3)人数总和比选择(4)的人数多

B.回该问卷的受访者中,选择校园外宣传的人数不是最少的

C.回答该问卷的受访者中,选择(4)的人数比选择(2)的人数可能多30

D.回答该问卷的总人数不可能是1000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)若,求在区间[-1,2]上的取值范围;

(Ⅱ)若对任意 恒成立,记,求的最大值.

查看答案和解析>>

同步练习册答案