精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱柱ABCDA1B1C1D1中,底面四边形ABCD是矩形,平面DCC1D1⊥平面ABCD.AD=3CD=DD1=5,∠D1DC=120°,MN分别是线段AD1BD的中点.

1)求证:MN//平面DCC1D1

2)求证:MN⊥平面ADC1

3)求三棱锥D1ADC1的体积.

【答案】1)证明见解析;(2)证明见解析;(3.

【解析】

1)连结,则上,推导出,由此能证明平面

2)连结,推导出,从而平面,进而平面,再则,能证明平面

3)三棱锥的体积为,由此能求出结果.

1)证明:连结,则上,

已知分别是线段的中点,所以

平面平面

所以平面

2)证明:连结

因为在四棱柱中,底面四边形是矩形,

又因为平面平面.平面平面

所以平面,而平面,得

,因此平面

又因为,所以平面

3)因为平面 到平面的距离为

已知

三棱锥的体积为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】改革开放40年来,体育产业蓬勃发展反映了健康中国理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).

(Ⅰ)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多亿元以上的概率;

(Ⅱ)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;

(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本相同的资料书配给三个班级,要求每班至少一本且至多六本,则不同的分配方法共有_____种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】012345这六个数字组成无重复数字的四位数.

(1)在组成的四位数中,求所有偶数的个数;

2)在组成的四位数中,求比2430大的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是各项均为正数的等差数列.

(1)若,且成等比数列,求数列的通项公式

(2)在(1)的条件下,数列的前和为,设,若对任意的,不等式恒成立,求突数的最小值:

(3)若数列中有两项可以表示位某个整数的不同次冪,求证:数列中存在无穷多项构成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率 ,直线 被以椭圆 的短轴为直径的圆截得的弦长为 .

(1)求椭圆 的方程;

(2)过点 的直线 交椭圆于 两个不同的点,且 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀的硬币向上抛掷三次,下列两个事件中,是对立事件的是(

A.事件恰有两次正面向上,事件恰有两次反面向上

B.事件恰有两次正面向上,事件恰有一次正面向上

C.事件至少有一次正面向上,事件至多一次正面向上

D.事件至少有一次正面向上,事件恰有三次反面向上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

同步练习册答案