精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求不等式的解集;

(2)若恒成立,求实数的取值范围.

【答案】(1);(2).

【解析】

(1)由题意可得 0≤f(x)≤7,即0≤|x﹣1|≤7,﹣7≤x﹣1≤7,由此求得x的范围

(2)利用绝对值三角不等式求得g(x)=|x﹣1|+|x+2|的最小值为3,可得m2﹣2m≤3,由此求得m的范围.

(1)由|f(x)﹣3|≤4 知﹣4≤f(x)﹣3≤4,即﹣1≤f(x)≤7.

又f(x)0,故 0≤f(x)≤7,∴0≤|x﹣1|≤7,﹣7≤x﹣1≤7,∴﹣6≤x≤8,

所求不等式的解集为

(2)由f(x)+f(x+3)≥m2﹣2m,即|x﹣1|+|x+2|≥m2﹣2m恒成立.

令g(x)=|x﹣1|+|x+2|,则g(x)的最小值为|(x﹣1)﹣(x+2)|=3,

∴m2﹣2m≤3,求得﹣1≤m≤3,

m的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱台中,点上,且,点内(含边界)的一个动点,且有平面平面,则动点的轨迹是( )

A. 平面B. 直线C. 线段,但只含1个端点D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的侧棱垂直于底面,,点分别为的中点.

1)若,求三棱柱的体积;

2)证明:平面

3)请问当为何值时,平面,试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(nN*

Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an

Ⅱ)求数列{n2an}的前n项和Tn

Ⅲ)对任意nN*,使得 恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一辆汽车从市出发沿海岸一条笔直公路以每小时的速度向东均速行驶,汽车开动时,在市南偏东方向距且与海岸距离为的海上处有一快艇与汽车同时出发,要把一份稿件交给这汽车的司机.

1)快艇至少以多大的速度行驶才能把稿件送到司机手中?

2)在(1)的条件下,求快艇以最小速度行驶时的行驶方向与所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论函数的单调性;

(2)若函数有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线l过点.

1)若直线l的纵截距和横截距相等,求直线l的方程;

2)若直线l与两坐标轴围成的三角形的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, ,点E在棱PB上.

(Ⅰ)求证:平面

(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,x R其中a>0.

(Ⅰ)求函数f(x)的单调区间;

(Ⅱ)若函数f(x)在区间(-3,0)内恰有两个零点,求a的取值范围;

(Ⅲ)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记 ,求函数g(t)在区间[-4,-1]上的最小值.

查看答案和解析>>

同步练习册答案