精英家教网 > 高中数学 > 题目详情

【题目】已知函数,下列命题:

的定义域为

是奇函数;

上单调递增;

④若实数满足,则

⑤设函数在上的最大值为,最小值为,则.

其中真命题的序号是______.(写出所有真命题的序号)

【答案】①②③④.

【解析】

由对数的真数大于0,解不等式可判断①;由奇函数的定义,可判断②;由复合函数的单调性可判断③;由函数的奇偶性和单调性,解方程可判断④;由奇函数的性质:在对称区间上的最值之和为0,可判断⑤.

对于①,函数,由,得,当时,成立,当时,两边平方得成立.所以的定义域为,故①正确;

对于②,,所以是奇函数,故②正确;

对于③,令,设

所以,所以上单调递增,又上单调递增,所以上单调递增,又因为是奇函数,所以上单调递增,故③正确;

对于④,若实数满足,则有所以,即有,故④正确;

对于⑤,为奇函数,,∴,故⑤不正确.

故答案为:①②③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,焦距为2

1)求椭圆的标准方程;

2)过点的直线与椭圆的另一个交点为点,与圆的另一个交点为点,是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日.在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、春联等方式来表达对新年的美好祝愿.某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以任意免费领取一张“福”字或一副春联。茎叶图的统计数据是在不同时段内领取“福”字和春联的人数,则它们的中位数依次为( )

A.2527B.2625C.2627D.2725

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)证明:(i

ii)对任意恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2+acosx+bx,非空数集A={x|f(x)=0},B={x|f(f(x))=0},已知A=B,则参数a的所有取值构成的集合为_____;参数b的所有取值构成的集合为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解居民的用电情况,某地供电局抽查了该市若干户居民月均用电量(单位:),并将样本数据分组为,,,,,, ,其频率分布直方图如图所示.

(1)若样本中月均用电量在的居民有户,求样本容量;

(2)求月均用电量的中位数;

(3)在月均用电量为,,,的四组居民中,用分层随机抽样法抽取户居民,则月均用电量在的居民应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥PABCD的底面是边长为2的正方形,平面PAD⊥平面ABCDPAAD,∠PDA45°EF分别为ABPC的中点.

1)证明:EF∥平面PAD

2)在线段BC上是否存在一点H,使平面PAH⊥平面DEF?若存在,求此时二面角CHDP的平面角的正切值:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的左右焦点,在以为圆心,1为半径的圆上,且.

1)求椭圆的方程;

2)过点的直线交椭圆两点,过垂直的直线交圆两点,为线段的中点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)求函数f(x)的单调区间;

(Ⅱ)若不等式对任意的都成立(其中e是自然对数的底数),求的最大值.

查看答案和解析>>

同步练习册答案