精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点为,点在椭圆上.

)求椭圆的方程;

)点在圆上,且在第一象限,过的切线交椭圆于两点,问: 的周长是否为定值?若是,求出定值;若不是,说明理由.

【答案】(1;(2)详见解析

【解析】试题分析:(1)要求椭圆标准方程,就是要确定的值,题中焦点说明,点在椭圆上,把坐标代入标准方程可得的一个方程,联立后结合可解得;(2)定值问题,就是让切线绕圆旋转,求出的周长,为此设直线的方程为,由它与圆相切可得的关系, ,下面来求周长,设,把直线方程与椭圆方程联立方程组,消元后得一元二次方程,可得,由弦长公式得弦长,再求得(这也可由焦半径公式可得),再求周长,可得定值.

试题解析:(1)由题意得

所以椭圆方程为

2)由题意,设的方程为

与圆相切, ,即

,则

,同理

(定值)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知首项都是1的两个数列{},{}(≠0,n∈N*)满足

(1)令,求数列{}的通项公式;

(2)若,求数列{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.65.0之间的学生数为b,则ab的值分别为 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数6个零点,则实数的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PC⊥平面ABCD,点MPB中点,底面ABCD为梯形,ABCDADCDAD=CD=PC=AB.

1)证明:CM∥平面PAD

2)若四棱锥P-ABCD的体积为4,求点M到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,点为左焦点,过点轴的垂线交椭圆两点,且.

(1)求椭圆的方程;

(2)在圆上是否存在一点,使得在点处的切线与椭圆相交于两点满足?若存在,求的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为正实数.

讨论函数的单调性;

若存在,使得不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为:.

1)求直线和曲线的直角坐标方程;

2,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市举办酬宾活动,单次购物超过元的顾客可参与一次抽奖活动,活动规则如下:盒子中装有大小和形状完全相同的个小球,其中个红球、个白球和个黑球,从中不放回地随机抽取个球,每个球被抽到的机会均等.每抽到个红球记分,每抽到个白球记分,每抽到个黑球记.如果抽取个球总得分分可获得元现金,总得分低于分没有现金,其余得分可获得元现金.

1)设抽取个球总得分为随机变量,求随机变量的分布列;

2)设每位顾客一次抽奖获得现金元,求的数学期望.

查看答案和解析>>

同步练习册答案