精英家教网 > 高中数学 > 题目详情
关于y=3sin(2x+
π
4
)
有以下命题:
①若f(x1)=f(x2)=0,则x1-x2
π
2
的整数倍;
②函数解析式可改写为y=3cos(2x-
π
4
)

③函数图象关于x=-
π
8
对称;
④函数图象关于点(-
π
8
,0)
对称;
其中正确的命题是
①②④
①②④
分析:利用三角函数的性质,诱导公式,一一验证,即可得到结论.
解答:解:①∵y=3sin(2x+
π
4
)
的周期为T=
2
=π,∴f(x1)=f(x2)=0时,x1-x2
π
2
的整数倍,正确;
②函数解析式y=3sin(2x+
π
4
)=3cos(2x+
π
4
-
π
2
)
,即y=3cos(2x-
π
4
)
,故正确;
x=-
π
8
时,y=3sin(-
π
4
+
π
4
)
=0,∴函数图象不关于x=-
π
8
对称,故不正确;
④由③知,函数图象关于点(-
π
8
,0)
对称,正确;
故答案为①②④
点评:本题考查三角函数的性质,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列五个结论:
①函数y=2sin(2x-
π
3
)
有一条对称轴是x=
12

②函数y=tanx的图象关于点(
π
2
,0)对称;
③正弦函数在第一象限为增函数;
④要得到y=3sin(2x+
π
4
)
的图象,只需将y=3sin2x的图象左移
π
4
个单位;
⑤若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,则x1-x2=kπ,其中k∈Z;
其中正确的有
①②
①②
.(填写正确结论前面的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x)=
3
sin xcos x-cos2x-
1
2
,x∈R.
(1)求函数f (x)的最小值和最小正周期;
(2)若函数g (x)的图象与函数f (x)的图象关于y轴对称,记F (x)=f (x)+g (x),求F (x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3sin(2x-
π
3
)的图象为C,给出四个结论:
①图象C关于直线x=
11
12
π对称;
②图象C关于点(
3
,0)对称;
③函数f(x)在区间(-
π
12
12
)上是增函数;
④由y=3sin2x的图象向右平移
π
3
个单位长度可以得到图象C.
其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于y=3sin(2x+
π
4
)
有以下命题:
①若f(x1)=f(x2)=0,则x1-x2
π
2
的整数倍;
②函数解析式可改写为y=3cos(2x-
π
4
)

③函数图象关于x=-
π
8
对称;
④函数图象关于点(-
π
8
,0)
对称;
其中正确的命题是______.

查看答案和解析>>

同步练习册答案