精英家教网 > 高中数学 > 题目详情

【题目】定义域为R的函数fx)满足:对于任意的实数xy都有fx+y=fx+fy)成立,且当x0时,fx)>0恒成立,且nfx=fnx).(n是一个给定的正整数).

1)判断函数fx)的奇偶性,并证明你的结论;

2)证明fx)为减函数;若函数fx)在[-25]上总有fx)≤10成立,试确定f1)应满足的条件;

3)当a0时,解关于x的不等式

【答案】(1)见解析;(2)f1[-50);(3)见解析

【解析】

1)利用函数奇偶性的定义,结合抽象函数关系,利用赋值法进行证明

2)结合函数单调性的定义以及最值函数成立问题进行证明即可

3)利用抽象函数关系,结合函数奇偶性和单调性定义转化为一元二次不等式,讨论参数的范围进行求解即可

1fx)为奇函数,证明如下;

由已知对于任意实数xy都有fx+y=fx+fy恒成立.

x=y=0,得f0+0=f0+f0),所以f0=0

y=-x,得fx-x=fx+f-x=0

所以对于任意x,都有f-x=-fx).

所以fx)是奇函数.

2)设任意x1x2x1x2,则x2-x10,由已知fx2-x1)<0

fx2-x1=fx2+f-x1=fx2-fx1)<0fx2)<fx1),

根据函数单调性的定义和奇函数的性质知fx)在(-∞,+∞)上是减函数.

所以fx)在[-25]上的最大值为f-2).

要使fx)≤10恒成立,当且仅当f-2)≤10,

又因为f-2=-f2=-f1+1=-2f1,所以f1)≥-5.

x1fx)<0,所以f1)∈[-50).

3)∵.,

fax2-fa2x)>n2[fx-fa]

所以fax2-a2x)>n2fx-a),

所以fax2-a2x)>f[n2x-a]

因为fx(-∞,+∞)上是减函数,

所以ax2-a2xn2x-a).

即(x-a)(ax-n2)<0

因为a0,所以(x-a)(x)>0

讨论:

①当a0,即a-n时,原不等式的解集为{x|xxa}

②当a=,即a=-n时,原不等式的解集为{x|x≠-n}

③当a0,即-na0时,原不等式的解集为{x|xax}

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表是最近十届奥运会的年份、届别、主办国,以及主办国在上届获得的金牌数、当届

获得的金牌数的统计数据:

年份

1972

1976

1980

1984

1988

1992

1996

2000

2004

2008

届别

20

21

22

23

24

25

26

27

28

29

主办国家

联邦

德国

加拿大

苏联

美国

韩国

西班牙

美国

澳大

利亚

希腊

中国

上届金牌数

5

0

49

未参加

6

1

37

9

4

32

当界金牌数

13

0

80

83

12

13

44

16

6

51

某体育爱好组织,利用上表研究所获金牌数与主办奥运会之间的关系,

(1)求出主办国在上届所获金牌数(设为)与在当届所获金牌数(设为)之间的线性回归方程

其中

(2)在2008年第29届北京奥运会上日本获得9块金牌,则据此线性回归方程估计在2020 年第 32 届东

京奥运会上日本将获得的金牌数为(所有金牌数精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图所示:

给出下列四个命题:

(1)方程有且仅有6个根;

(2)方程有且仅有3个根;

(3)方程有且仅有5个根;

(4)方程有且仅有4个根.

其中正确命题的个数是( )

A. 4个B. 3个C. 2个D. 1个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为准备参加市运动会,对本校高一、高二两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:cm).跳高成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下定义为“不合格”.

(1)如果从所有运动员中用分层抽样抽取“合格”与“不合格”的人数共10人,问就抽取“合格”人数是多少?
(2)若从所有“合格”运动员中选取2名,用X表示所选运动员来自高一队的人数,试写出X的分布图,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差数列,bn , an+1 , bn+1成等比数列(n∈N*
(1)求a2 , a3 , a4及b2 , b3 , b4;由此归纳出{an},{bn}的通项公式,并证明你的结论.
(2)若cn=log2),Sn=c1+c2+…+cn , 试问是否存在正整数m,使Sm≥5,若存在,求最小的正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x)x,则下列结论中正确的是(  )
A.若﹣3≤m<n,则f(m)<f(n)
B.若m<n≤0,则f(m)<f(n)
C.若f(m)<f(n),则m2<n2
D.若f(m)<f(n),则m3<n3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=
证明:平面ADE⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量=(3,2)表示出来的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求的值;

(2)证明:是区间上的减函数;

(3)若,求实数的取值范围.

查看答案和解析>>

同步练习册答案