精英家教网 > 高中数学 > 题目详情
已知函数有两个零点x1,x2,则有
A.B.C.D.
B

 
分别作函数的图像,如图:交点的横坐标分别所以
故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)若直线l1交函数f(x)的图象于P,Q两点,与l1平行的直线与函数的图象切于点R,求证 P,R,Q三点的横坐标成等差数列;
(II)若不等式恒成立,求实数a的取值范围;
(III)求证:〔其中, e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知关于的一元二次方程,求使方程有两个大于零的实数根的充要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且定义域为(0,2).
(1)求关于x的方程+3在(0,2)上的解;
(2)若是定义域(0,2)上的单调函数,求实数的取值范围;
(3)若关于x的方程在(0,2)上有两个不同的解,求k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数满足,且有唯
一实数解。
(1)求的表达式 ;
(2)记,且,求数列的通项公式。
(3)记 ,数列{}的前 项和为 ,是否存在k∈N*,使得
对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知二次函数图象以原点为顶点且过点(1,1),反比例函数的图象与直线的两个交点间的距离为8,
(1)求函数的表达式;
(2)证明:当时,关于的方程有三个实数解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设x,y满足则x+y的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.如“函数f(x)=x3-3x2+3x对称中心为点 (1,1)”请你将这一发现

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数有四个零点,则的取值范围是              

查看答案和解析>>

同步练习册答案