精英家教网 > 高中数学 > 题目详情
15.已知直线l:y=k(x-2)与抛物线C:y2=8x交于A,B两点,F为抛物线C的焦点,若|AF|=3|BF|,则直线l的倾斜角为$\frac{π}{3}$或$\frac{2π}{3}$.

分析 设A,B两点的抛物线的准线上的射影分别为E,F,过B作AE的垂线BC,在三角形ABC中,∠BAC等于直线AB的倾斜角,其正切值即为K值,在直角三角形ABC中,得出直线AB的斜率.

解答 解:如图,设A,B两点的抛物线的准线上的射影分别为E,F′,
过B作AE的垂线BC,
在三角形ABC中,∠BAC等于直线AB的倾斜角,其正切值即为K值,
设|BF|=n,∵|AF|=3|BF|,∴|AF|=3n,
根据抛物线的定义得:|AE|=3n,|BF′|=n,
∴|AC|=2n,
在直角三角形ABC中,tan∠BAC=$\frac{\sqrt{16{n}^{2}-4{n}^{2}}}{2n}$=$\sqrt{3}$,
∴kAB=kAF=$\sqrt{3}$.
∴直线l的倾斜角为$\frac{π}{3}$.
根据对称性,直线l的倾斜角为$\frac{2π}{3}$,满足题意.
故答案为$\frac{π}{3}$或$\frac{2π}{3}$.

点评 本题考查直线的倾斜角的求法,是中档题,解题时要熟练掌握抛物线的简单性质,注意数形结合思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{3x-2y-6≤0}\\{y≥1}\end{array}\right.$,则目标函数z=x+3y的最小值为(  )
A.2B.3C.4D.$\frac{17}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知映射f:A→B,A={1,3},B={a,b},a,b是实数,对应法则f:x→x2,则a+b的值是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.汉中最美油菜花节期间,5名游客到四个不同景点游览,每个景点至少有一人,则不同的游览方法共有(  )种.
A.120B.625C.240D.1024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.
(1)求证:直线DE∥平面ABC;
(2)求锐二面角B1-AE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z满足$\frac{z}{|z|}=\frac{3}{5}+\frac{4}{5}i$,则z的实部与虚部之比为(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$-\frac{4}{3}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆C:(x-3)2+(y+1)2=4,过P(1,5)的直线l与圆C相切,则直线l的方程为x=1或4x+3y-19=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的公差不为0,a1=1,且a1,a2,a4成等比数列,设{an}的前n项和为Sn,则Sn=(  )
A.$\frac{(n+1)^{2}}{4}$B.$\frac{n(n+3)}{4}$C.$\frac{n(n+1)}{2}$D.$\frac{{n}^{2}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线3x+4y-2=0和直线6x+8y+1=0的距离是(  )
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{3}{10}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案