精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,平面平面,四边形为平行四边形,.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.
(I)详见解析;(II).

试题分析:(I)利用两平面垂直的性质定理,证明BC平面AEC,再根据线面垂直的性质定理证明AEBC,根据勾股定理证明AEEC,利用线面垂直的判定定理证明AE平面BCEF;(II)三棱锥体积利用体积转换为以E为顶点,为底面的椎体体积求得.
试题解析::(I)∵平面平面ABCD,且平面平面ABCD=AC,
   平面BCEF
平面AEC ,  平面AEC
, 又
  , 且
平面ECBF.
(II)设AC的中点为G,连接EG, , ,
∵平面平面ABCD,且平面平面
平面ABCD  
 , ,
 ,即三棱锥D-ACF的体积为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱的底面是直角三角形, ,侧棱与底面所成角为,点在底面上的射影落在上.

(1)求证:平面
(2)若,且当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形,满足上,上,且,沿将矩形折起成为一个直三棱柱,使重合后分别记为,在直三棱柱中,点分别为的中点.

(I)证明:∥平面
(Ⅱ)若二面角为直二面角,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 点.
(I)求证:平面PBD丄平面PAC;
(Ⅱ)求三棱锥D-ABP和三棱锥B-PCD的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF平面EFDC,设AD中点为P.
(Ⅰ)当E为BC中点时,求证:CP∥平面ABEF;
(Ⅱ)设BE=x,当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD—A1B1C1D1中,E、F分别为棱BB1和DD1的中点.

(1)求证:平面B1FC//平面ADE;
(2)试在棱DC上取一点M,使平面ADE;
(3)设正方体的棱长为1,求四面体A­1—FEA的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四面体中,,则四面体外接球的表面积为
A.36πB.88πC.92πD.128π

查看答案和解析>>

同步练习册答案