精英家教网 > 高中数学 > 题目详情
13.求证:cos($\frac{3}{2}$π-α)=-sinα,sin($\frac{3}{2}$π-α)=-cosα.

分析 由已知条件利用余弦函数加法定理和正弦函数加法定理能证明cos($\frac{3}{2}$π-α)=-sinα,sin($\frac{3}{2}$π-α)=-cosα.

解答 证明:cos($\frac{3}{2}$π-α)=cos$\frac{3π}{2}$cosα+sin$\frac{3π}{2}$sinα=-sinα.
∴cos($\frac{3}{2}$π-α)=-sinα;
sin($\frac{3}{2}$π-α)=$sin\frac{3}{2}πcosα-cos\frac{3π}{2}sinα$=-cosα.
∴sin($\frac{3}{2}$π-α)=-cosα.

点评 本题考查三角函数的化简证明,是基础题,解题时要认真审题,注意余弦函数加法定理和正弦函数加法定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.函数f(x)=Asin(ωx+φ)(A>0)的图象如图所示.试依图指出:
(1)f(x)的最小正周期;
(2)f(x)=0的x的取值集合;
(3)使f(x)<0的x的取值集合
(4)f(x)的单调递增区间和递减区间;
(5)求使f(x)取最小值的x的集合;
(6)图象的对称轴方程;
(7)图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线y2=4x上的点P与圆x2+y2-8x+15=0上的动点Q距离最小值为2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若点E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.则空间四边形的四条边与两条对角线中与平面EFGH平行的条数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设θ∈(0,$\frac{π}{4}$),则二次曲线$\frac{{x}^{2}}{tanθ}$-tanθ•y2=1的离心率的取值范围为(  )
A.(1,$\sqrt{2}$]B.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆心为O,半径为1的圆上有三点A、B、C,若7$\overrightarrow{OA}$+5$\overrightarrow{OB}$+8$\overrightarrow{OC}$=$\overrightarrow{0}$,则|$\overrightarrow{BC}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算$\frac{d}{dx}$${∫}_{\frac{1}{x}}^{\sqrt{x}}$cost2dt(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1中,则直线D1C与平面ABC所成角的大小等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={1,2},B={x|x2+ax+b=0},C={x|cx+1=0},若A=B,则a+b=-1,若C⊆A,则常数c组成的集合为{-1,$\frac{1}{2}$,0}.

查看答案和解析>>

同步练习册答案