精英家教网 > 高中数学 > 题目详情

定义在R上的函数f(x)满足下列三个条件:(1)f(x+3)=-数学公式;(2)对任意3≤x1<x2≤6,都有f(x1)<f(x2);(3)y=f(x+3)的图象关于y轴对称.则下列结论中正确的是


  1. A.
    f(3)<f(7)<f(4.5)
  2. B.
    f(3)<f(4.5)<f(7)
  3. C.
    f(7)<f(4.5)<f(3)
  4. D.
    f(7)<f(3)<f(4.5)
B
分析:先由f(x+3)=-,得函数周期为6,得到f(7)=f(1);再利用y=f(x+3)的图象关于y轴对称得到y=f(x)的图象关于x=3轴对称,进而得到f(1)=f(5);最后利用条件(2)得出结论.
解答:因为f(x+3)=-
所以f(x+6)=-=-=f(x);
即函数周期为6,故f(7)=f(1).
又因为y=f(x+3)的图象关于y轴对称,
所以y=f(x)的图象关于x=3轴对称.
所以f(1)=f(5).
又对任意3≤x1<x2≤6,都有f(x1)<f(x2);
所以f(3)<f(4.5)<f(5)=f(1)=f(7).
故选B.
点评:本题主要考查函数奇偶性,周期性与单调性的综合问题.解决本题的关键有两处:①由f(x+3)=-,得函数周期为6;②由y=f(x+3)的图象关于y轴对称得到y=f(x)的图象关于x=3轴对称.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案