精英家教网 > 高中数学 > 题目详情

【题目】下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为PQ,高分别为21,底面半径为1A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:

①三棱锥体积的最大值为

直线PB与平面PAQ所成角的最大值为

当直线BQAP所成角最小时,其正弦值为

④直线BQAP所成角的最大值为

其中正确的结论有___________.(写出所有正确结论的编号)

【答案】①③

【解析】

可知只需求点A到面的最大值

对于,求直线PB与平面PAQ所成角的最大值,可转化为到轴截面距离的最大值问题进行求解

对于③④,可采用建系法进行分析

选项

如图所示,当时,四棱锥体积最大,

选项中,线PB与平面PAQ所成角最大值的正弦值为,所以

选项,如图所示:

以垂直于方向为x轴,方向为y轴,方向为z轴,其中,.,

设直线BQAP所成角为,当时,取到最大值,,此时

由于,所以取不到

答案选

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)求证: .

2)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:

sin213°cos217°sin13°cos17°

sin215°cos215°sin15°cos15°

sin218°cos212°sin18°cos12°

sin2(18°)cos248°sin(18°)cos48°

sin2(25°)cos255°sin(25°)cos55°.

试从上述五个式子中选择一个,求出这个常数;

根据的计算结果,将该同学的发现推广为三角恒等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,记集合;

(1)设,,求.

(2)设,,若,求实数a的取值范围.

(3)设.如果求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运动员参加射击比赛,每人射击4次(每次射一发),比赛规定:全不中得0分,只中一弹得15分,中两弹得40分,中三弹得65分,中四弹得100分.已知某一运动员每一次射击的命中率为,则他的得分期望为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级举行了一次全年级的大型考试,在数学成绩优秀和非优秀的学生中,物理、化学、总分成绩也为优秀的人数如下表所示,则我们能以99%的把握认为数学成绩优秀与物理、化学、总分成绩优秀有关系吗?

物理优秀

化学优秀

总分优秀

数学优秀

228

225

267

数学非优秀

143

156

99

:该年级此次考试中数学成绩优秀的有360,非优秀的有880.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥PABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为的正三角形,EF分别是PAAB的中点,∠CEF=90°.则球O的体积为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=+bx+c,

(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;

(2)若f(x)在x=1处取得极值,且x[-1,2]时,f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

同步练习册答案