【题目】已知.
(1)若,求在处的切线与两坐标轴围成的三角形的面积;
(2)若在上的最大值为,求的值.
科目:高中数学 来源: 题型:
【题目】已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线?
(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心为原点,焦点为,离心率为,不与坐标轴垂直的直线与椭圆交于,两点.
(1)若为线段的中点,求直线的方程.
(2)若点是直线上一点,点在椭圆上,且满足,设直线与直线的斜率分别为,,问是否为定值?若是,请求出的值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形中,等边三角形,,以为折痕将折起,使得平面平面.
(1)设为的中点,求证:平面;
(2)若与平面所成角的正切值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.
(Ⅰ)设为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件发生的概率;
(Ⅱ)设表示参加文明宣传工作的女志愿者人数,求随机变量的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com