精英家教网 > 高中数学 > 题目详情
如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.
(Ⅰ)椭圆的方程为 . (Ⅱ)实数取值范围为.

试题分析:(Ⅰ)由抛物线方程,得焦点
所以椭圆的方程为:
解方程组 得C(1,2),D(1,-2). 由于抛物线、椭圆都关于x轴对称,
, ∴ .       2分
因此,,解得并推得
故椭圆的方程为 .                  4分
(Ⅱ)由题意知直线的斜率存在.

.
.  6分
.
,∴

,∴.∴,  8分
,∴
.
∵点在椭圆上,∴
,  10分

∴实数取值范围为.  12分
点评:难题,求椭圆的标准方程,主要运用了抛物线及椭圆的几何性质,建立a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)结合向量的坐标运算,确定得到t的函数式,通过确定函数的值域,达到确定实数取值范围的目的。利用函数思想解题,是一道好例。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。

(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆 若直线则该椭圆的离心率等于      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的两条渐近线的夹角为,则双曲线的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B为抛物线上的不同两点,F为抛物线C的焦点,若则直线AB的斜率为
A.        B.       C.       D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线:上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线的方程;
(Ⅱ)设直线与抛物线交于不同两点,若满足,证明直线恒过定点,并求出定点的坐标.
(Ⅲ)试把问题(Ⅱ)的结论推广到任意抛物线:中,请写出结论,不用证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以双曲线的右顶点为焦点的抛物线的标准方程为  (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如右图,抛物线C:(p>0)的焦点为F,A为C上的点,以F为圆心,为半径的圆与线段AF的交点为B,∠AFx=60°,A在y轴上的射影为N,则∠=      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线的极坐标方程为,曲线:上的点到直线的距离为,则的最大值为_________.

查看答案和解析>>

同步练习册答案