分析 把原不等式化为分式不等式,求出它的解集即可.
解答 解:∵(3-2a)${\;}^{-\frac{1}{3}}$>(a-1)${\;}^{-\frac{1}{3}}$,
∴(3-2a)-1>(a-1)-1,
即$\frac{1}{3-2a}$>$\frac{1}{a-1}$,
移项得$\frac{1}{3-2a}$-$\frac{1}{a-1}$>0,
通分得$\frac{3a-4}{(2a-3)(a-1)}$<0,
解得a<1或$\frac{4}{3}$<a<$\frac{3}{2}$;
∴实数a的取值范围是{a|a<1或$\frac{4}{3}$<a<$\frac{3}{2}$}.
故答案为:{a|a<1或$\frac{4}{3}$<a<$\frac{3}{2}$}.
点评 本题考查了分式不等式的解法与应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | 0 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{2\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com