【题目】已知点A,B,C的坐标分别为A(3,0),B(0,3),C(cos α,sin α),α∈.
(1)若||=||,求角α的值;
(2)若=-1,求的值.
【答案】(1)α=;(2)-.
【解析】试题分析:(1)根据两向量的模相等,利用两点间的距离公式建立等式求得tanα的值,根据α的范围求得α.
(2)根据向量的基本运算根据=-1,求得sin +cos =,然后同角和与差的关系可得到2sin cos =-,化简代入即可.
试题解析:
(1)∵=(cos -3,sin ),=(cos ,sin -3),
∴||=,
||=.
由||=||,得sin =cos .
又∵∈,∴ =.
(2)由=-1,得(cos -3)cos +sin (sin -3)=-1.
∴sin +cos =. ①
又=2sin cos .
由①式两边平方,得1+2sin cos =,
∴2sin cos =-.
∴=-.
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点是和,并且经过点,抛物线的顶点在坐标原点,焦点恰好是椭圆的右顶点.
(Ⅰ)求椭圆和抛物线的标准方程;
(Ⅱ)已知点为抛物线内一个定点,过作斜率分别为的两条直线交抛物线于点,且分别是的中点,若,求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列{an},定义 为{an}的“优值”,现在已知某数列{an}的“优值” ,记数列{an﹣kn}的前n项和为Sn , 若Sn≤S5对任意的n∈N+恒成立,则实数k的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的部分图象如图所示.
(1)求f(x)的解析式;
(2)求f(x)的单调递增区间和对称中心坐标;
(3)将f(x)的图象向左平移 个单位,再讲横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数g(x)的图象,求函数y=g(x)在 上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线: 恒过定点,圆经过点和点,且圆心在直线上.
(1)求定点的坐标;
(2)求圆的方程;
(3)已知点为圆直径的一个端点,若另一个端点为点,问:在轴上是否存在一点,使得为直角三角形,若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两直线l1:mx+8y+n=0和l2:2x+my﹣1=0,试确定m,n的值,使
(1)l1与l2相交于点P(m,﹣1);
(2)l1∥l2;
(3)l1⊥l2 , 且l1在y轴上的截距为﹣1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线: ,曲线: (为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线, 的极坐标方程;
(Ⅱ)曲线: (为参数, , )分别交, 于, 两点,当取何值时, 取得最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆和点,动圆经过点且与圆相切,圆心的轨迹为曲线
(1)求曲线的方程;
(2)点是曲线与轴正半轴的交点,点在曲线上,若直线的斜率满足求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为:(为参数).
(1)求曲线的直角坐标方程与曲线的普通方程;
(2)将曲线经过伸缩变换后得到曲线,若分别是曲线和曲线上的动点,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com