精英家教网 > 高中数学 > 题目详情

【题目】机器人(阿法狗)在下围棋时,令人称道的算法策略是:每一手棋都能保证在接下来的十几步后,局面依然是满意的.这种策略给了我们启示:每一步相对完美的决策,对最后的胜利都会产生积极的影响.

下面的算法是寻找比较大的数,现输入正整数“42618012791882573118“,从左到右依次为,其中最大的数记为,则 ( )

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】模拟程序框图的运行过程,可得:

i=1

m=42,t=61,n=80

i=2

不满足条件t>4m且t>4n,m=61,t=80,n=12,i=3

不满足条件t>4m且t>4n,m=80,t=12,n=79,i=4

不满足条件t>4m且t>4n,m=12,t=79,n=18,i=5

满足条件t>4m且t>4n,结束,输出t的值为79.

由于最大的数记为T的值为82,

则Tt=8279=3.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a>0,f(x)= + 是R上的偶函数.
(1)求a的值;
(2)证明f(x)在(0,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若 且f(x)在区间 上有最小值,无最大值,则ω的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标

元件甲

8

12

40

32

8

元件乙

7

18

40

29

6

(1)试分别估计元件甲、乙为正品的概率;

(2)生产一件元件甲,若是正品可盈利40元,若是次品则亏损5元,生产一件元件乙,若是正品可盈利50元,若是次品则亏损10元.在(1)的前提下:

(i)记为生产1件甲和1件乙所得的总利润,求随机变量的分布列和数学期望;

(ii)求生产5件元件乙所获得的利润不少于140元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心为M(x0 , y0),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x0)=0.若函数f(x)=x3﹣3x2 , 则可求出f( )+f( )+f( )+…+f( )+f( )的值为(
A.4029
B.﹣4029
C.8058
D.﹣8058

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x3 ax2+(a﹣1)x+1在区间(2,3)内为减函数,在区间(5,+∞)为增函数,则实数a的取值范围是(
A.[3,4]
B.[5,7]
C.[4,6]
D.[7,8]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知右焦点为的椭圆关于直线对称的图形过坐标原点.

(1)求椭圆的方程;

(2)过点且不垂直于轴的直线与椭圆交于两点,点关于轴的对称点为.证明:直线轴的交点为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5


(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程 = x+ ,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间? 参考公式:回归直线 =bx+a,其中b= = ,a= ﹣b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+(2b﹣1)x+6b﹣a为偶函数,且f(x+1)﹣f(x)=2x+1.
(1)求函数f(x)的解析式;
(2)设g(x)=f(x)+λx,求函数g(x)在[0,1]内的最小值.

查看答案和解析>>

同步练习册答案