精英家教网 > 高中数学 > 题目详情
(本小题满分14分)某公司决定采用增加广告投入和技术改造投入两项措施来获得更大的收益.通过对市场的预测,当对两项投入都不大于3(百万元)时,每投入(百万元)广告费,增加的销售额可近似的用函数(百万元)来计算;每投入x(百万元)技术改造费用,增加的销售额可近似的用函数(百万元)来计算.现该公司准备共投入3(百万元),分别用于广告投入和技术改造投入,请设计一种资金分配方案,使得该公司的销售额最大. (参考数据:≈1.41,≈1.73)

解:设3百万元中技术改造投入为x(百万元),广告费投入为3-x(百万元),则广告收入带来的销售额增加值为-2(3-x)2+14(3-x)(百万元),技术改造投入带来的销售额增加值为-x3+2x2+5x(百万元),所以,投入带来的销售额增加值F(x)=-2(3-x)2+14(3-x)-x3+2x2+5x.
整理上式得F(x)=-x3+3x+24,
因为F′(x)=-x2+3,令F′(x)=0,解得x=或x=-(舍去),
当x∈[0,),F′(x)>0,当x∈(,3]时,F′(x)<0,
所以,x=≈1.73时,F(x)取得最大值.
所以,当该公司用于广告投入1.27(百万元),用于技术改造投入1.73(百万元)时,公司将有最大的销售额.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.设函数f(x)=-a+x+a,x∈(0,1],a∈R*.
(1)若f(x)在(0,1]上是增函数,求a的取值范围;
(2)求f(x)在(0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,对任意的,都存在,使得则实数的取值范围是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出以下四个结论:
(1)若关于的方程没有实数根,则的取值范围是
(2)曲线与直线有两个交点时,实数的取值范围是 
(3)已知点与点在直线两侧, 则3b-2a>1;
(4)若将函数的图像向右平移个单位后变为偶函数,则 的最小值是;其中正确的结论是:__________________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在(-1,1)上的函数,f(x)满足:f(x)-f(y)=f();当x∈(-1,0)时,有f(x)>0.若p=f()+f(),Q=f(),R=f(0);则 P,Q,R的大小关系为
A.R>Q>PB.R>P>QC.P>R>QD.Q>P>R

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设集合,如果方程至少有一个根,就称方程为合格方程,则合格方程的个数为(     )
A.13B.15C.17D.19

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
关于x的二次方程有两个根,其中一个根在区间(—1,0)内,另一个根在区间(1,2)内,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、(本小题满分12分)已知函数
(1)若,求的零点;
(2)若函数在区间上有两个不同的零点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂家拟对一商品举行促销活动,当该商品的售价为元时,全年的促销费用为万元;根据以往的销售经验,实施促销后的年销售量万件,其中4为常数.当该商品的售价为6元时,年销售量为49万件.
(Ⅰ)求出的值;
(Ⅱ)若每件该商品的成本为4元时,写出厂家销售该商品的年利润万元与售价元之间的关系;
(Ⅲ)当该商品售价为多少元时,使厂家销售该商品所获年利润最大.

查看答案和解析>>

同步练习册答案